Properties

Label 2664.2.r.n.433.4
Level $2664$
Weight $2$
Character 2664.433
Analytic conductor $21.272$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,2,Mod(433,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.r (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2721470985\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} + 4x^{7} + 54x^{6} + 6x^{5} + 98x^{4} - 8x^{3} + 148x^{2} - 24x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.4
Root \(1.50928 - 2.61415i\) of defining polynomial
Character \(\chi\) \(=\) 2664.433
Dual form 2664.2.r.n.1009.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.717824 - 1.24331i) q^{5} +(-0.0542045 + 0.0938850i) q^{7} +O(q^{10})\) \(q+(0.717824 - 1.24331i) q^{5} +(-0.0542045 + 0.0938850i) q^{7} +4.03713 q^{11} +(-1.19743 + 2.07401i) q^{13} +(-0.500000 - 0.866025i) q^{17} +(-1.82114 + 3.15430i) q^{19} +3.53386 q^{23} +(1.46946 + 2.54517i) q^{25} -1.30484 q^{29} +4.03713 q^{31} +(0.0778186 + 0.134786i) q^{35} +(5.87256 - 1.58526i) q^{37} +(-1.53381 + 2.65663i) q^{41} +2.43565 q^{43} -5.40706 q^{47} +(3.49412 + 6.05200i) q^{49} +(3.91430 + 6.77977i) q^{53} +(2.89795 - 5.01939i) q^{55} +(-3.83970 - 6.65056i) q^{59} +(1.56340 - 2.70789i) q^{61} +(1.71909 + 2.97754i) q^{65} +(0.614512 - 1.06437i) q^{67} +(-1.69648 + 2.93839i) q^{71} +5.76541 q^{73} +(-0.218831 + 0.379026i) q^{77} +(6.34279 - 10.9860i) q^{79} +(-1.01656 - 1.76074i) q^{83} -1.43565 q^{85} +(-3.53381 - 6.12073i) q^{89} +(-0.129812 - 0.224841i) q^{91} +(2.61451 + 4.52847i) q^{95} -13.0250 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 3 q^{5} + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 3 q^{5} + 3 q^{7} - 16 q^{11} + q^{13} - 5 q^{17} - 3 q^{19} + 12 q^{23} - 12 q^{25} - 16 q^{31} - 5 q^{35} - 12 q^{37} - 9 q^{41} + 4 q^{43} - 32 q^{47} - 18 q^{49} - 5 q^{53} + 4 q^{55} + 5 q^{59} + 15 q^{61} - 23 q^{65} + q^{67} + 17 q^{71} - 36 q^{73} + 4 q^{77} + 21 q^{79} + 15 q^{83} + 6 q^{85} - 29 q^{89} - q^{91} + 21 q^{95} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.717824 1.24331i 0.321021 0.556024i −0.659678 0.751548i \(-0.729307\pi\)
0.980699 + 0.195524i \(0.0626407\pi\)
\(6\) 0 0
\(7\) −0.0542045 + 0.0938850i −0.0204874 + 0.0354852i −0.876087 0.482152i \(-0.839855\pi\)
0.855600 + 0.517638i \(0.173188\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.03713 1.21724 0.608620 0.793462i \(-0.291723\pi\)
0.608620 + 0.793462i \(0.291723\pi\)
\(12\) 0 0
\(13\) −1.19743 + 2.07401i −0.332107 + 0.575226i −0.982925 0.184008i \(-0.941093\pi\)
0.650818 + 0.759234i \(0.274426\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.500000 0.866025i −0.121268 0.210042i 0.799000 0.601331i \(-0.205363\pi\)
−0.920268 + 0.391289i \(0.872029\pi\)
\(18\) 0 0
\(19\) −1.82114 + 3.15430i −0.417797 + 0.723646i −0.995718 0.0924470i \(-0.970531\pi\)
0.577920 + 0.816093i \(0.303864\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.53386 0.736862 0.368431 0.929655i \(-0.379895\pi\)
0.368431 + 0.929655i \(0.379895\pi\)
\(24\) 0 0
\(25\) 1.46946 + 2.54517i 0.293891 + 0.509035i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.30484 −0.242303 −0.121151 0.992634i \(-0.538659\pi\)
−0.121151 + 0.992634i \(0.538659\pi\)
\(30\) 0 0
\(31\) 4.03713 0.725090 0.362545 0.931966i \(-0.381908\pi\)
0.362545 + 0.931966i \(0.381908\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.0778186 + 0.134786i 0.0131538 + 0.0227830i
\(36\) 0 0
\(37\) 5.87256 1.58526i 0.965443 0.260616i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.53381 + 2.65663i −0.239541 + 0.414896i −0.960583 0.277995i \(-0.910330\pi\)
0.721042 + 0.692891i \(0.243663\pi\)
\(42\) 0 0
\(43\) 2.43565 0.371433 0.185716 0.982603i \(-0.440539\pi\)
0.185716 + 0.982603i \(0.440539\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.40706 −0.788701 −0.394350 0.918960i \(-0.629030\pi\)
−0.394350 + 0.918960i \(0.629030\pi\)
\(48\) 0 0
\(49\) 3.49412 + 6.05200i 0.499161 + 0.864571i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.91430 + 6.77977i 0.537671 + 0.931273i 0.999029 + 0.0440590i \(0.0140290\pi\)
−0.461358 + 0.887214i \(0.652638\pi\)
\(54\) 0 0
\(55\) 2.89795 5.01939i 0.390759 0.676815i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.83970 6.65056i −0.499886 0.865829i 0.500114 0.865960i \(-0.333292\pi\)
−1.00000 0.000131117i \(0.999958\pi\)
\(60\) 0 0
\(61\) 1.56340 2.70789i 0.200173 0.346710i −0.748411 0.663235i \(-0.769183\pi\)
0.948584 + 0.316525i \(0.102516\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.71909 + 2.97754i 0.213226 + 0.369319i
\(66\) 0 0
\(67\) 0.614512 1.06437i 0.0750746 0.130033i −0.826044 0.563605i \(-0.809414\pi\)
0.901119 + 0.433572i \(0.142747\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.69648 + 2.93839i −0.201335 + 0.348722i −0.948959 0.315400i \(-0.897861\pi\)
0.747624 + 0.664122i \(0.231195\pi\)
\(72\) 0 0
\(73\) 5.76541 0.674790 0.337395 0.941363i \(-0.390454\pi\)
0.337395 + 0.941363i \(0.390454\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.218831 + 0.379026i −0.0249381 + 0.0431940i
\(78\) 0 0
\(79\) 6.34279 10.9860i 0.713620 1.23603i −0.249869 0.968280i \(-0.580388\pi\)
0.963489 0.267747i \(-0.0862790\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.01656 1.76074i −0.111582 0.193266i 0.804826 0.593511i \(-0.202258\pi\)
−0.916408 + 0.400245i \(0.868925\pi\)
\(84\) 0 0
\(85\) −1.43565 −0.155718
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.53381 6.12073i −0.374583 0.648797i 0.615682 0.787995i \(-0.288881\pi\)
−0.990265 + 0.139198i \(0.955547\pi\)
\(90\) 0 0
\(91\) −0.129812 0.224841i −0.0136080 0.0235697i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.61451 + 4.52847i 0.268243 + 0.464611i
\(96\) 0 0
\(97\) −13.0250 −1.32249 −0.661246 0.750169i \(-0.729972\pi\)
−0.661246 + 0.750169i \(0.729972\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.25761 0.722159 0.361080 0.932535i \(-0.382408\pi\)
0.361080 + 0.932535i \(0.382408\pi\)
\(102\) 0 0
\(103\) 11.0724 1.09099 0.545496 0.838114i \(-0.316341\pi\)
0.545496 + 0.838114i \(0.316341\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.05752 8.75989i 0.488929 0.846851i −0.510989 0.859587i \(-0.670721\pi\)
0.999919 + 0.0127364i \(0.00405423\pi\)
\(108\) 0 0
\(109\) 8.72114 + 15.1055i 0.835334 + 1.44684i 0.893758 + 0.448549i \(0.148059\pi\)
−0.0584239 + 0.998292i \(0.518607\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.10253 + 8.83785i 0.480006 + 0.831395i 0.999737 0.0229353i \(-0.00730118\pi\)
−0.519731 + 0.854330i \(0.673968\pi\)
\(114\) 0 0
\(115\) 2.53669 4.39368i 0.236548 0.409713i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.108409 0.00993784
\(120\) 0 0
\(121\) 5.29840 0.481673
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3975 1.01942
\(126\) 0 0
\(127\) −4.43050 7.67384i −0.393143 0.680944i 0.599719 0.800210i \(-0.295279\pi\)
−0.992862 + 0.119267i \(0.961946\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.88786 13.6622i −0.689165 1.19367i −0.972108 0.234533i \(-0.924644\pi\)
0.282943 0.959137i \(-0.408689\pi\)
\(132\) 0 0
\(133\) −0.197428 0.341955i −0.0171191 0.0296512i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.7904 1.77625 0.888124 0.459604i \(-0.152009\pi\)
0.888124 + 0.459604i \(0.152009\pi\)
\(138\) 0 0
\(139\) 5.12898 + 8.88365i 0.435034 + 0.753501i 0.997298 0.0734564i \(-0.0234030\pi\)
−0.562264 + 0.826958i \(0.690070\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.83417 + 8.37303i −0.404254 + 0.700188i
\(144\) 0 0
\(145\) −0.936646 + 1.62232i −0.0777842 + 0.134726i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.78328 −0.473784 −0.236892 0.971536i \(-0.576129\pi\)
−0.236892 + 0.971536i \(0.576129\pi\)
\(150\) 0 0
\(151\) −0.757735 + 1.31244i −0.0616636 + 0.106805i −0.895209 0.445646i \(-0.852974\pi\)
0.833546 + 0.552451i \(0.186307\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.89795 5.01939i 0.232769 0.403167i
\(156\) 0 0
\(157\) 1.99905 + 3.46246i 0.159542 + 0.276334i 0.934703 0.355429i \(-0.115665\pi\)
−0.775162 + 0.631763i \(0.782332\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.191551 + 0.331777i −0.0150964 + 0.0261477i
\(162\) 0 0
\(163\) 7.03513 + 12.1852i 0.551034 + 0.954418i 0.998200 + 0.0599675i \(0.0190997\pi\)
−0.447167 + 0.894451i \(0.647567\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.5904 20.0751i 0.896891 1.55346i 0.0654437 0.997856i \(-0.479154\pi\)
0.831447 0.555604i \(-0.187513\pi\)
\(168\) 0 0
\(169\) 3.63233 + 6.29139i 0.279410 + 0.483953i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.653417 + 1.13175i 0.0496784 + 0.0860454i 0.889795 0.456360i \(-0.150847\pi\)
−0.840117 + 0.542405i \(0.817514\pi\)
\(174\) 0 0
\(175\) −0.318605 −0.0240843
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.30493 −0.396509 −0.198255 0.980151i \(-0.563527\pi\)
−0.198255 + 0.980151i \(0.563527\pi\)
\(180\) 0 0
\(181\) 11.2888 19.5528i 0.839091 1.45335i −0.0515644 0.998670i \(-0.516421\pi\)
0.890655 0.454679i \(-0.150246\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.24449 8.43934i 0.165019 0.620473i
\(186\) 0 0
\(187\) −2.01856 3.49626i −0.147612 0.255672i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.79127 −0.129612 −0.0648059 0.997898i \(-0.520643\pi\)
−0.0648059 + 0.997898i \(0.520643\pi\)
\(192\) 0 0
\(193\) −18.6998 −1.34604 −0.673020 0.739624i \(-0.735003\pi\)
−0.673020 + 0.739624i \(0.735003\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.1633 + 22.7995i 0.937848 + 1.62440i 0.769475 + 0.638677i \(0.220518\pi\)
0.168373 + 0.985723i \(0.446149\pi\)
\(198\) 0 0
\(199\) 9.76742 0.692394 0.346197 0.938162i \(-0.387473\pi\)
0.346197 + 0.938162i \(0.387473\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.0707282 0.122505i 0.00496415 0.00859815i
\(204\) 0 0
\(205\) 2.20201 + 3.81399i 0.153795 + 0.266381i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.35216 + 12.7343i −0.508560 + 0.880851i
\(210\) 0 0
\(211\) −23.3974 −1.61074 −0.805371 0.592771i \(-0.798034\pi\)
−0.805371 + 0.592771i \(0.798034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.74837 3.02826i 0.119238 0.206526i
\(216\) 0 0
\(217\) −0.218831 + 0.379026i −0.0148552 + 0.0257299i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.39486 0.161095
\(222\) 0 0
\(223\) 4.83880 0.324030 0.162015 0.986788i \(-0.448201\pi\)
0.162015 + 0.986788i \(0.448201\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.87666 + 17.1069i −0.655537 + 1.13542i 0.326222 + 0.945293i \(0.394224\pi\)
−0.981759 + 0.190130i \(0.939109\pi\)
\(228\) 0 0
\(229\) −3.13629 + 5.43222i −0.207252 + 0.358971i −0.950848 0.309658i \(-0.899785\pi\)
0.743596 + 0.668629i \(0.233119\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.87583 −0.581475 −0.290738 0.956803i \(-0.593901\pi\)
−0.290738 + 0.956803i \(0.593901\pi\)
\(234\) 0 0
\(235\) −3.88132 + 6.72264i −0.253189 + 0.438537i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.44906 + 4.24190i 0.158417 + 0.274385i 0.934298 0.356493i \(-0.116028\pi\)
−0.775881 + 0.630879i \(0.782694\pi\)
\(240\) 0 0
\(241\) 7.53417 13.0496i 0.485319 0.840597i −0.514539 0.857467i \(-0.672037\pi\)
0.999858 + 0.0168701i \(0.00537019\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.0327 0.640964
\(246\) 0 0
\(247\) −4.36136 7.55409i −0.277507 0.480656i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.68341 0.358734 0.179367 0.983782i \(-0.442595\pi\)
0.179367 + 0.983782i \(0.442595\pi\)
\(252\) 0 0
\(253\) 14.2667 0.896937
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.55621 9.62363i −0.346587 0.600306i 0.639054 0.769162i \(-0.279326\pi\)
−0.985641 + 0.168856i \(0.945993\pi\)
\(258\) 0 0
\(259\) −0.169487 + 0.637273i −0.0105314 + 0.0395982i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.75369 + 13.4298i −0.478113 + 0.828116i −0.999685 0.0250910i \(-0.992012\pi\)
0.521572 + 0.853207i \(0.325346\pi\)
\(264\) 0 0
\(265\) 11.2391 0.690414
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −31.4086 −1.91502 −0.957509 0.288402i \(-0.906876\pi\)
−0.957509 + 0.288402i \(0.906876\pi\)
\(270\) 0 0
\(271\) −1.39579 2.41759i −0.0847884 0.146858i 0.820513 0.571628i \(-0.193688\pi\)
−0.905301 + 0.424771i \(0.860355\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.93238 + 10.2752i 0.357736 + 0.619617i
\(276\) 0 0
\(277\) 4.46232 7.72896i 0.268115 0.464388i −0.700260 0.713888i \(-0.746933\pi\)
0.968375 + 0.249499i \(0.0802660\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.47760 + 2.55928i 0.0881462 + 0.152674i 0.906728 0.421717i \(-0.138572\pi\)
−0.818581 + 0.574391i \(0.805239\pi\)
\(282\) 0 0
\(283\) 10.0001 17.3207i 0.594444 1.02961i −0.399181 0.916872i \(-0.630705\pi\)
0.993625 0.112736i \(-0.0359613\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.166279 0.288003i −0.00981512 0.0170003i
\(288\) 0 0
\(289\) 8.00000 13.8564i 0.470588 0.815083i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.20201 + 12.4742i −0.420746 + 0.728753i −0.996013 0.0892127i \(-0.971565\pi\)
0.575267 + 0.817966i \(0.304898\pi\)
\(294\) 0 0
\(295\) −11.0249 −0.641896
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.23155 + 7.32925i −0.244717 + 0.423862i
\(300\) 0 0
\(301\) −0.132023 + 0.228671i −0.00760969 + 0.0131804i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.24449 3.88758i −0.128519 0.222602i
\(306\) 0 0
\(307\) −10.7635 −0.614306 −0.307153 0.951660i \(-0.599376\pi\)
−0.307153 + 0.951660i \(0.599376\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.1266 22.7359i −0.744339 1.28923i −0.950503 0.310715i \(-0.899431\pi\)
0.206164 0.978517i \(-0.433902\pi\)
\(312\) 0 0
\(313\) 16.0661 + 27.8273i 0.908110 + 1.57289i 0.816687 + 0.577081i \(0.195808\pi\)
0.0914237 + 0.995812i \(0.470858\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.37219 + 4.10876i 0.133236 + 0.230771i 0.924922 0.380157i \(-0.124130\pi\)
−0.791687 + 0.610928i \(0.790797\pi\)
\(318\) 0 0
\(319\) −5.26781 −0.294940
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.64227 0.202661
\(324\) 0 0
\(325\) −7.03827 −0.390413
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.293087 0.507642i 0.0161584 0.0279872i
\(330\) 0 0
\(331\) 8.77399 + 15.1970i 0.482262 + 0.835302i 0.999793 0.0203626i \(-0.00648205\pi\)
−0.517531 + 0.855665i \(0.673149\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.882224 1.52806i −0.0482010 0.0834866i
\(336\) 0 0
\(337\) 8.90837 15.4297i 0.485270 0.840512i −0.514587 0.857438i \(-0.672055\pi\)
0.999857 + 0.0169263i \(0.00538805\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.2984 0.882608
\(342\) 0 0
\(343\) −1.51645 −0.0818807
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.476577 0.0255840 0.0127920 0.999918i \(-0.495928\pi\)
0.0127920 + 0.999918i \(0.495928\pi\)
\(348\) 0 0
\(349\) −4.54622 7.87429i −0.243354 0.421501i 0.718314 0.695719i \(-0.244914\pi\)
−0.961667 + 0.274218i \(0.911581\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.1029 + 29.6231i 0.910296 + 1.57668i 0.813647 + 0.581360i \(0.197479\pi\)
0.0966487 + 0.995319i \(0.469188\pi\)
\(354\) 0 0
\(355\) 2.43555 + 4.21849i 0.129265 + 0.223894i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.9188 1.47350 0.736750 0.676166i \(-0.236360\pi\)
0.736750 + 0.676166i \(0.236360\pi\)
\(360\) 0 0
\(361\) 2.86692 + 4.96566i 0.150891 + 0.261350i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.13855 7.16818i 0.216622 0.375200i
\(366\) 0 0
\(367\) −9.73959 + 16.8695i −0.508402 + 0.880578i 0.491550 + 0.870849i \(0.336430\pi\)
−0.999953 + 0.00972935i \(0.996903\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.848691 −0.0440619
\(372\) 0 0
\(373\) −7.34990 + 12.7304i −0.380564 + 0.659155i −0.991143 0.132800i \(-0.957603\pi\)
0.610579 + 0.791955i \(0.290937\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.56245 2.70624i 0.0804703 0.139379i
\(378\) 0 0
\(379\) −18.4137 31.8935i −0.945848 1.63826i −0.754045 0.656823i \(-0.771900\pi\)
−0.191803 0.981433i \(-0.561434\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.3167 29.9934i 0.884842 1.53259i 0.0389466 0.999241i \(-0.487600\pi\)
0.845895 0.533349i \(-0.179067\pi\)
\(384\) 0 0
\(385\) 0.314164 + 0.544148i 0.0160113 + 0.0277323i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.58912 + 4.48449i −0.131274 + 0.227373i −0.924168 0.381987i \(-0.875240\pi\)
0.792894 + 0.609359i \(0.208573\pi\)
\(390\) 0 0
\(391\) −1.76693 3.06042i −0.0893576 0.154772i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.10602 15.7721i −0.458174 0.793580i
\(396\) 0 0
\(397\) −35.1077 −1.76201 −0.881003 0.473111i \(-0.843131\pi\)
−0.881003 + 0.473111i \(0.843131\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −33.7787 −1.68683 −0.843414 0.537265i \(-0.819458\pi\)
−0.843414 + 0.537265i \(0.819458\pi\)
\(402\) 0 0
\(403\) −4.83417 + 8.37303i −0.240807 + 0.417090i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.7083 6.39991i 1.17518 0.317232i
\(408\) 0 0
\(409\) 12.3669 + 21.4202i 0.611506 + 1.05916i 0.990987 + 0.133960i \(0.0427694\pi\)
−0.379481 + 0.925200i \(0.623897\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.832516 0.0409655
\(414\) 0 0
\(415\) −2.91885 −0.143281
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.96584 15.5293i −0.438010 0.758655i 0.559526 0.828813i \(-0.310983\pi\)
−0.997536 + 0.0701574i \(0.977650\pi\)
\(420\) 0 0
\(421\) −19.6597 −0.958157 −0.479078 0.877772i \(-0.659029\pi\)
−0.479078 + 0.877772i \(0.659029\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.46946 2.54517i 0.0712791 0.123459i
\(426\) 0 0
\(427\) 0.169487 + 0.293560i 0.00820204 + 0.0142064i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.6767 21.9566i 0.610614 1.05761i −0.380523 0.924771i \(-0.624256\pi\)
0.991137 0.132843i \(-0.0424106\pi\)
\(432\) 0 0
\(433\) −1.83825 −0.0883407 −0.0441703 0.999024i \(-0.514064\pi\)
−0.0441703 + 0.999024i \(0.514064\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.43565 + 11.1469i −0.307859 + 0.533227i
\(438\) 0 0
\(439\) 11.9705 20.7335i 0.571321 0.989557i −0.425109 0.905142i \(-0.639764\pi\)
0.996431 0.0844155i \(-0.0269023\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.8299 −1.51228 −0.756142 0.654407i \(-0.772918\pi\)
−0.756142 + 0.654407i \(0.772918\pi\)
\(444\) 0 0
\(445\) −10.1466 −0.480996
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.07159 3.58810i 0.0977645 0.169333i −0.812995 0.582271i \(-0.802164\pi\)
0.910759 + 0.412938i \(0.135497\pi\)
\(450\) 0 0
\(451\) −6.19218 + 10.7252i −0.291578 + 0.505028i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.372729 −0.0174738
\(456\) 0 0
\(457\) −11.0014 + 19.0549i −0.514622 + 0.891352i 0.485234 + 0.874384i \(0.338734\pi\)
−0.999856 + 0.0169673i \(0.994599\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.60614 7.97807i −0.214529 0.371576i 0.738597 0.674147i \(-0.235488\pi\)
−0.953127 + 0.302571i \(0.902155\pi\)
\(462\) 0 0
\(463\) −19.5846 + 33.9215i −0.910174 + 1.57647i −0.0963566 + 0.995347i \(0.530719\pi\)
−0.813817 + 0.581121i \(0.802614\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.2572 −1.35386 −0.676932 0.736046i \(-0.736691\pi\)
−0.676932 + 0.736046i \(0.736691\pi\)
\(468\) 0 0
\(469\) 0.0666187 + 0.115387i 0.00307616 + 0.00532807i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.83303 0.452123
\(474\) 0 0
\(475\) −10.7043 −0.491148
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00111 + 1.73397i 0.0457418 + 0.0792272i 0.887990 0.459863i \(-0.152102\pi\)
−0.842248 + 0.539090i \(0.818768\pi\)
\(480\) 0 0
\(481\) −3.74412 + 14.0780i −0.170717 + 0.641900i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.34969 + 16.1941i −0.424547 + 0.735338i
\(486\) 0 0
\(487\) 9.26318 0.419755 0.209877 0.977728i \(-0.432694\pi\)
0.209877 + 0.977728i \(0.432694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −38.7415 −1.74838 −0.874189 0.485587i \(-0.838606\pi\)
−0.874189 + 0.485587i \(0.838606\pi\)
\(492\) 0 0
\(493\) 0.652420 + 1.13002i 0.0293835 + 0.0508937i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.183913 0.318547i −0.00824965 0.0142888i
\(498\) 0 0
\(499\) 11.6970 20.2597i 0.523628 0.906951i −0.475994 0.879449i \(-0.657911\pi\)
0.999622 0.0275019i \(-0.00875523\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.81104 10.0650i −0.259101 0.448777i 0.706900 0.707313i \(-0.250093\pi\)
−0.966001 + 0.258537i \(0.916760\pi\)
\(504\) 0 0
\(505\) 5.20969 9.02345i 0.231828 0.401538i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0681 27.8307i −0.712205 1.23358i −0.964028 0.265802i \(-0.914363\pi\)
0.251822 0.967774i \(-0.418970\pi\)
\(510\) 0 0
\(511\) −0.312511 + 0.541285i −0.0138247 + 0.0239451i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.94801 13.7664i 0.350231 0.606618i
\(516\) 0 0
\(517\) −21.8290 −0.960038
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.97383 17.2752i 0.436961 0.756839i −0.560492 0.828160i \(-0.689388\pi\)
0.997453 + 0.0713204i \(0.0227213\pi\)
\(522\) 0 0
\(523\) 7.64601 13.2433i 0.334336 0.579088i −0.649021 0.760771i \(-0.724821\pi\)
0.983357 + 0.181683i \(0.0581545\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.01856 3.49626i −0.0879300 0.152299i
\(528\) 0 0
\(529\) −10.5118 −0.457035
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.67325 6.36225i −0.159106 0.275580i
\(534\) 0 0
\(535\) −7.26083 12.5761i −0.313913 0.543713i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.1062 + 24.4327i 0.607598 + 1.05239i
\(540\) 0 0
\(541\) −12.3482 −0.530889 −0.265444 0.964126i \(-0.585519\pi\)
−0.265444 + 0.964126i \(0.585519\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.0410 1.07264
\(546\) 0 0
\(547\) −14.3317 −0.612781 −0.306390 0.951906i \(-0.599121\pi\)
−0.306390 + 0.951906i \(0.599121\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.37629 4.11586i 0.101233 0.175341i
\(552\) 0 0
\(553\) 0.687616 + 1.19099i 0.0292404 + 0.0506459i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.24159 + 14.2748i 0.349207 + 0.604845i 0.986109 0.166100i \(-0.0531176\pi\)
−0.636902 + 0.770945i \(0.719784\pi\)
\(558\) 0 0
\(559\) −2.91651 + 5.05155i −0.123355 + 0.213658i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.0160 −1.01215 −0.506076 0.862489i \(-0.668905\pi\)
−0.506076 + 0.862489i \(0.668905\pi\)
\(564\) 0 0
\(565\) 14.6509 0.616368
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.2829 −0.892224 −0.446112 0.894977i \(-0.647192\pi\)
−0.446112 + 0.894977i \(0.647192\pi\)
\(570\) 0 0
\(571\) −18.4543 31.9638i −0.772289 1.33764i −0.936306 0.351186i \(-0.885778\pi\)
0.164017 0.986458i \(-0.447555\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.19286 + 8.99430i 0.216557 + 0.375088i
\(576\) 0 0
\(577\) −4.89321 8.47529i −0.203707 0.352831i 0.746013 0.665931i \(-0.231966\pi\)
−0.949720 + 0.313101i \(0.898632\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.220409 0.00914410
\(582\) 0 0
\(583\) 15.8025 + 27.3708i 0.654474 + 1.13358i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.6730 + 20.2183i −0.481798 + 0.834498i −0.999782 0.0208922i \(-0.993349\pi\)
0.517984 + 0.855390i \(0.326683\pi\)
\(588\) 0 0
\(589\) −7.35216 + 12.7343i −0.302941 + 0.524708i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.5229 −1.00703 −0.503517 0.863985i \(-0.667961\pi\)
−0.503517 + 0.863985i \(0.667961\pi\)
\(594\) 0 0
\(595\) 0.0778186 0.134786i 0.00319025 0.00552568i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.24659 + 12.5515i −0.296088 + 0.512839i −0.975237 0.221161i \(-0.929015\pi\)
0.679150 + 0.734000i \(0.262349\pi\)
\(600\) 0 0
\(601\) −12.7216 22.0344i −0.518923 0.898801i −0.999758 0.0219902i \(-0.993000\pi\)
0.480835 0.876811i \(-0.340334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.80332 6.58755i 0.154627 0.267822i
\(606\) 0 0
\(607\) −12.3718 21.4286i −0.502157 0.869762i −0.999997 0.00249282i \(-0.999207\pi\)
0.497840 0.867269i \(-0.334127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.47456 11.2143i 0.261933 0.453681i
\(612\) 0 0
\(613\) −14.4675 25.0584i −0.584336 1.01210i −0.994958 0.100294i \(-0.968022\pi\)
0.410622 0.911806i \(-0.365312\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.99021 10.3753i −0.241157 0.417696i 0.719887 0.694091i \(-0.244193\pi\)
−0.961044 + 0.276395i \(0.910860\pi\)
\(618\) 0 0
\(619\) 27.5003 1.10533 0.552664 0.833404i \(-0.313611\pi\)
0.552664 + 0.833404i \(0.313611\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.766193 0.0306969
\(624\) 0 0
\(625\) 0.834113 1.44473i 0.0333645 0.0577890i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.30916 4.29315i −0.171817 0.171179i
\(630\) 0 0
\(631\) 11.3878 + 19.7243i 0.453341 + 0.785210i 0.998591 0.0530635i \(-0.0168986\pi\)
−0.545250 + 0.838274i \(0.683565\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.7213 −0.504828
\(636\) 0 0
\(637\) −16.7358 −0.663098
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.8026 + 41.2273i 0.940146 + 1.62838i 0.765190 + 0.643804i \(0.222645\pi\)
0.174956 + 0.984576i \(0.444022\pi\)
\(642\) 0 0
\(643\) 12.8931 0.508454 0.254227 0.967145i \(-0.418179\pi\)
0.254227 + 0.967145i \(0.418179\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.54728 + 16.5364i −0.375342 + 0.650112i −0.990378 0.138387i \(-0.955808\pi\)
0.615036 + 0.788499i \(0.289141\pi\)
\(648\) 0 0
\(649\) −15.5014 26.8492i −0.608482 1.05392i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.61858 13.1958i 0.298138 0.516390i −0.677572 0.735456i \(-0.736968\pi\)
0.975710 + 0.219066i \(0.0703011\pi\)
\(654\) 0 0
\(655\) −22.6484 −0.884946
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.2087 + 31.5384i −0.709310 + 1.22856i 0.255803 + 0.966729i \(0.417660\pi\)
−0.965113 + 0.261832i \(0.915673\pi\)
\(660\) 0 0
\(661\) −3.51949 + 6.09594i −0.136892 + 0.237105i −0.926319 0.376741i \(-0.877045\pi\)
0.789426 + 0.613845i \(0.210378\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.566873 −0.0219824
\(666\) 0 0
\(667\) −4.61113 −0.178544
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.31165 10.9321i 0.243659 0.422029i
\(672\) 0 0
\(673\) −7.20694 + 12.4828i −0.277807 + 0.481176i −0.970839 0.239731i \(-0.922941\pi\)
0.693033 + 0.720906i \(0.256274\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.20640 0.276964 0.138482 0.990365i \(-0.455778\pi\)
0.138482 + 0.990365i \(0.455778\pi\)
\(678\) 0 0
\(679\) 0.706016 1.22286i 0.0270944 0.0469289i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.20054 14.2038i −0.313785 0.543491i 0.665394 0.746493i \(-0.268264\pi\)
−0.979178 + 0.203001i \(0.934930\pi\)
\(684\) 0 0
\(685\) 14.9239 25.8489i 0.570212 0.987637i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.7484 −0.714256
\(690\) 0 0
\(691\) −14.8159 25.6619i −0.563624 0.976225i −0.997176 0.0750968i \(-0.976073\pi\)
0.433552 0.901128i \(-0.357260\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.7268 0.558620
\(696\) 0 0
\(697\) 3.06762 0.116194
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.6580 21.9243i −0.478086 0.828069i 0.521598 0.853191i \(-0.325336\pi\)
−0.999684 + 0.0251219i \(0.992003\pi\)
\(702\) 0 0
\(703\) −5.69433 + 21.4108i −0.214766 + 0.807523i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.393395 + 0.681381i −0.0147952 + 0.0256260i
\(708\) 0 0
\(709\) 43.4575 1.63208 0.816040 0.577996i \(-0.196165\pi\)
0.816040 + 0.577996i \(0.196165\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.2667 0.534291
\(714\) 0 0
\(715\) 6.94017 + 12.0207i 0.259548 + 0.449550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.3150 + 35.1865i 0.757620 + 1.31224i 0.944061 + 0.329771i \(0.106971\pi\)
−0.186441 + 0.982466i \(0.559695\pi\)
\(720\) 0 0
\(721\) −0.600172 + 1.03953i −0.0223516 + 0.0387140i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.91741 3.32104i −0.0712106 0.123340i
\(726\) 0 0
\(727\) −0.208149 + 0.360525i −0.00771984 + 0.0133711i −0.869860 0.493300i \(-0.835791\pi\)
0.862140 + 0.506671i \(0.169124\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.21782 2.10933i −0.0450429 0.0780165i
\(732\) 0 0
\(733\) 13.5615 23.4891i 0.500904 0.867591i −0.499096 0.866547i \(-0.666334\pi\)
0.999999 0.00104386i \(-0.000332271\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.48086 4.29698i 0.0913838 0.158281i
\(738\) 0 0
\(739\) −43.7595 −1.60972 −0.804859 0.593466i \(-0.797759\pi\)
−0.804859 + 0.593466i \(0.797759\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.96049 + 15.5200i −0.328728 + 0.569374i −0.982260 0.187525i \(-0.939953\pi\)
0.653531 + 0.756899i \(0.273287\pi\)
\(744\) 0 0
\(745\) −4.15138 + 7.19039i −0.152095 + 0.263436i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.548281 + 0.949651i 0.0200338 + 0.0346995i
\(750\) 0 0
\(751\) 45.0987 1.64567 0.822837 0.568277i \(-0.192390\pi\)
0.822837 + 0.568277i \(0.192390\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.08784 + 1.88420i 0.0395906 + 0.0685729i
\(756\) 0 0
\(757\) 0.495673 + 0.858531i 0.0180156 + 0.0312039i 0.874893 0.484317i \(-0.160932\pi\)
−0.856877 + 0.515521i \(0.827598\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.9423 18.9526i −0.396658 0.687031i 0.596654 0.802499i \(-0.296497\pi\)
−0.993311 + 0.115468i \(0.963163\pi\)
\(762\) 0 0
\(763\) −1.89090 −0.0684552
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.3911 0.664062
\(768\) 0 0
\(769\) −55.1741 −1.98963 −0.994814 0.101714i \(-0.967567\pi\)
−0.994814 + 0.101714i \(0.967567\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −21.3288 + 36.9426i −0.767144 + 1.32873i 0.171962 + 0.985104i \(0.444990\pi\)
−0.939106 + 0.343629i \(0.888344\pi\)
\(774\) 0 0
\(775\) 5.93238 + 10.2752i 0.213098 + 0.369096i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.58655 9.67618i −0.200159 0.346685i
\(780\) 0 0
\(781\) −6.84890 + 11.8626i −0.245073 + 0.424479i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.73987 0.204865
\(786\) 0 0
\(787\) 31.3011 1.11576 0.557882 0.829920i \(-0.311614\pi\)
0.557882 + 0.829920i \(0.311614\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.10632 −0.0393363
\(792\) 0 0
\(793\) 3.74412 + 6.48501i 0.132958 + 0.230289i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.45442 + 2.51912i 0.0515181 + 0.0892320i 0.890634 0.454720i \(-0.150261\pi\)
−0.839116 + 0.543952i \(0.816927\pi\)
\(798\) 0 0
\(799\) 2.70353 + 4.68265i 0.0956440 + 0.165660i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.2757 0.821382
\(804\) 0 0
\(805\) 0.275000 + 0.476315i 0.00969249 + 0.0167879i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.20884 14.2181i 0.288607 0.499882i −0.684870 0.728665i \(-0.740141\pi\)
0.973478 + 0.228783i \(0.0734745\pi\)
\(810\) 0 0
\(811\) −19.6948 + 34.1124i −0.691577 + 1.19785i 0.279743 + 0.960075i \(0.409751\pi\)
−0.971321 + 0.237772i \(0.923583\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.1999 0.707573
\(816\) 0 0
\(817\) −4.43565 + 7.68277i −0.155184 + 0.268786i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.3763 + 33.5607i −0.676237 + 1.17128i 0.299868 + 0.953981i \(0.403057\pi\)
−0.976106 + 0.217297i \(0.930276\pi\)
\(822\) 0 0
\(823\) 1.34259 + 2.32543i 0.0467996 + 0.0810593i 0.888476 0.458922i \(-0.151764\pi\)
−0.841677 + 0.539982i \(0.818431\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.04014 + 6.99772i −0.140489 + 0.243335i −0.927681 0.373374i \(-0.878201\pi\)
0.787192 + 0.616708i \(0.211534\pi\)
\(828\) 0 0
\(829\) 20.5826 + 35.6502i 0.714865 + 1.23818i 0.963012 + 0.269459i \(0.0868450\pi\)
−0.248147 + 0.968722i \(0.579822\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.49412 6.05200i 0.121064 0.209689i
\(834\) 0 0
\(835\) −16.6397 28.8208i −0.575841 0.997386i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.60297 + 6.24052i 0.124388 + 0.215447i 0.921494 0.388393i \(-0.126970\pi\)
−0.797105 + 0.603840i \(0.793637\pi\)
\(840\) 0 0
\(841\) −27.2974 −0.941289
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.4295 0.358786
\(846\) 0 0
\(847\) −0.287197 + 0.497441i −0.00986822 + 0.0170923i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20.7528 5.60210i 0.711398 0.192038i
\(852\) 0 0
\(853\) −14.7749 25.5909i −0.505883 0.876215i −0.999977 0.00680647i \(-0.997833\pi\)
0.494094 0.869409i \(-0.335500\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.19030 −0.143138 −0.0715689 0.997436i \(-0.522801\pi\)
−0.0715689 + 0.997436i \(0.522801\pi\)
\(858\) 0 0
\(859\) −4.17824 −0.142560 −0.0712799 0.997456i \(-0.522708\pi\)
−0.0712799 + 0.997456i \(0.522708\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.6916 + 32.3748i 0.636269 + 1.10205i 0.986245 + 0.165291i \(0.0528563\pi\)
−0.349976 + 0.936759i \(0.613810\pi\)
\(864\) 0 0
\(865\) 1.87615 0.0637911
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 25.6067 44.3521i 0.868647 1.50454i
\(870\) 0 0
\(871\) 1.47167 + 2.54900i 0.0498656 + 0.0863697i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.617795 + 1.07005i −0.0208853 + 0.0361744i
\(876\) 0 0
\(877\) 24.4772 0.826535 0.413267 0.910610i \(-0.364387\pi\)
0.413267 + 0.910610i \(0.364387\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.7602 + 22.1014i −0.429904 + 0.744615i −0.996864 0.0791300i \(-0.974786\pi\)
0.566961 + 0.823745i \(0.308119\pi\)
\(882\) 0 0
\(883\) −23.4144 + 40.5549i −0.787957 + 1.36478i 0.139260 + 0.990256i \(0.455528\pi\)
−0.927217 + 0.374526i \(0.877806\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.0809 0.372059 0.186029 0.982544i \(-0.440438\pi\)
0.186029 + 0.982544i \(0.440438\pi\)
\(888\) 0 0
\(889\) 0.960611 0.0322179
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.84700 17.0555i 0.329517 0.570741i
\(894\) 0 0
\(895\) −3.80801 + 6.59567i −0.127288 + 0.220469i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.26781 −0.175691
\(900\) 0 0
\(901\) 3.91430 6.77977i 0.130404 0.225867i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.2068 28.0710i −0.538731 0.933110i
\(906\) 0 0
\(907\) 5.50863 9.54122i 0.182911 0.316811i −0.759960 0.649970i \(-0.774781\pi\)
0.942871 + 0.333159i \(0.108115\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 43.0485 1.42626 0.713130 0.701031i \(-0.247277\pi\)
0.713130 + 0.701031i \(0.247277\pi\)
\(912\) 0 0
\(913\) −4.10399 7.10831i −0.135822 0.235251i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.71023 0.0564768
\(918\) 0 0
\(919\) −25.4727 −0.840266 −0.420133 0.907463i \(-0.638017\pi\)
−0.420133 + 0.907463i \(0.638017\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.06282 7.03701i −0.133729 0.231626i
\(924\) 0 0
\(925\) 12.6642 + 12.6172i 0.416398 + 0.414851i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.40048 + 4.15775i −0.0787571 + 0.136411i −0.902714 0.430241i \(-0.858428\pi\)
0.823957 + 0.566653i \(0.191762\pi\)
\(930\) 0 0
\(931\) −25.4531 −0.834192
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.79590 −0.189546
\(936\) 0 0
\(937\) 0.799339 + 1.38450i 0.0261133 + 0.0452295i 0.878787 0.477215i \(-0.158354\pi\)
−0.852673 + 0.522444i \(0.825020\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.5581 40.8038i −0.767972 1.33017i −0.938661 0.344841i \(-0.887933\pi\)
0.170690 0.985325i \(-0.445400\pi\)
\(942\) 0 0
\(943\) −5.42027 + 9.38818i −0.176508 + 0.305721i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0133155 0.0230631i −0.000432695 0.000749451i 0.865809 0.500375i \(-0.166804\pi\)
−0.866242 + 0.499625i \(0.833471\pi\)
\(948\) 0 0
\(949\) −6.90366 + 11.9575i −0.224102 + 0.388157i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.59727 4.49861i −0.0841340 0.145724i 0.820888 0.571089i \(-0.193479\pi\)
−0.905022 + 0.425365i \(0.860146\pi\)
\(954\) 0 0
\(955\) −1.28582 + 2.22710i −0.0416081 + 0.0720673i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.12694 + 1.95191i −0.0363907 + 0.0630305i
\(960\) 0 0
\(961\) −14.7016 −0.474245
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.4232 + 23.2496i −0.432107 + 0.748431i
\(966\) 0 0
\(967\) 16.0381 27.7788i 0.515751 0.893308i −0.484081 0.875023i \(-0.660846\pi\)
0.999833 0.0182846i \(-0.00582049\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.02675 + 13.9027i 0.257591 + 0.446160i 0.965596 0.260047i \(-0.0837380\pi\)
−0.708005 + 0.706207i \(0.750405\pi\)
\(972\) 0 0
\(973\) −1.11205 −0.0356508
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.4120 37.0867i −0.685031 1.18651i −0.973427 0.228997i \(-0.926455\pi\)
0.288397 0.957511i \(-0.406878\pi\)
\(978\) 0 0
\(979\) −14.2664 24.7102i −0.455957 0.789741i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.5524 + 26.9375i 0.496044 + 0.859174i 0.999990 0.00456159i \(-0.00145200\pi\)
−0.503945 + 0.863736i \(0.668119\pi\)
\(984\) 0 0
\(985\) 37.7958 1.20427
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.60725 0.273695
\(990\) 0 0
\(991\) 13.1784 0.418624 0.209312 0.977849i \(-0.432878\pi\)
0.209312 + 0.977849i \(0.432878\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.01129 12.1439i 0.222273 0.384988i
\(996\) 0 0
\(997\) 10.3616 + 17.9468i 0.328155 + 0.568382i 0.982146 0.188121i \(-0.0602397\pi\)
−0.653991 + 0.756503i \(0.726906\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.2.r.n.433.4 10
3.2 odd 2 296.2.i.c.137.2 yes 10
12.11 even 2 592.2.i.h.433.4 10
37.10 even 3 inner 2664.2.r.n.1009.4 10
111.47 odd 6 296.2.i.c.121.2 10
444.47 even 6 592.2.i.h.417.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.i.c.121.2 10 111.47 odd 6
296.2.i.c.137.2 yes 10 3.2 odd 2
592.2.i.h.417.4 10 444.47 even 6
592.2.i.h.433.4 10 12.11 even 2
2664.2.r.n.433.4 10 1.1 even 1 trivial
2664.2.r.n.1009.4 10 37.10 even 3 inner