L(s) = 1 | + (−0.147 − 1.97i)2-s + (−2.87 + 0.433i)4-s + (−0.733 + 0.680i)5-s + (−0.900 + 0.433i)7-s + (0.841 + 3.68i)8-s + (0.826 + 0.563i)9-s + (1.44 + 1.34i)10-s + (0.826 − 0.563i)11-s + (−1.48 − 0.716i)13-s + (0.988 + 1.71i)14-s + (4.36 − 1.34i)16-s + (−0.162 − 0.414i)17-s + (0.988 − 1.71i)18-s + (1.81 − 2.27i)20-s + (−1.23 − 1.54i)22-s + ⋯ |
L(s) = 1 | + (−0.147 − 1.97i)2-s + (−2.87 + 0.433i)4-s + (−0.733 + 0.680i)5-s + (−0.900 + 0.433i)7-s + (0.841 + 3.68i)8-s + (0.826 + 0.563i)9-s + (1.44 + 1.34i)10-s + (0.826 − 0.563i)11-s + (−1.48 − 0.716i)13-s + (0.988 + 1.71i)14-s + (4.36 − 1.34i)16-s + (−0.162 − 0.414i)17-s + (0.988 − 1.71i)18-s + (1.81 − 2.27i)20-s + (−1.23 − 1.54i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 - 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 - 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4920852504\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4920852504\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.733 - 0.680i)T \) |
| 7 | \( 1 + (0.900 - 0.433i)T \) |
| 11 | \( 1 + (-0.826 + 0.563i)T \) |
good | 2 | \( 1 + (0.147 + 1.97i)T + (-0.988 + 0.149i)T^{2} \) |
| 3 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 13 | \( 1 + (1.48 + 0.716i)T + (0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 + (0.162 + 0.414i)T + (-0.733 + 0.680i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 29 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 41 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 43 | \( 1 + (0.0332 - 0.145i)T + (-0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 53 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 59 | \( 1 + (1.21 + 1.12i)T + (0.0747 + 0.997i)T^{2} \) |
| 61 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (1.23 + 1.54i)T + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.142 + 1.90i)T + (-0.988 - 0.149i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.123 - 0.0841i)T + (0.365 + 0.930i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.045609750445057255466904056179, −7.999394188313837331973243254214, −7.44802792055704216702156731220, −6.23759725052968443967798785808, −5.00757818747293625639934973915, −4.34582584295565405906368454952, −3.41970520245272223437057371787, −2.86989917044289946986208211331, −2.01400885439452585163364512414, −0.40728778331936876951914854232,
1.13411094084994508549246265985, 3.58485084488143939775264049597, 4.37572848012329689026584300911, 4.63547219861261467961533953481, 5.79529468553278497755368008840, 6.78286995904782219202965349288, 7.01540680618644955146335891347, 7.60643149833483143572621683215, 8.599992419272782682275751805787, 9.228439697233635975401487620532