L(s) = 1 | + (−0.147 − 1.97i)2-s + (−2.87 + 0.433i)4-s + (−0.733 + 0.680i)5-s + (−0.900 + 0.433i)7-s + (0.841 + 3.68i)8-s + (0.826 + 0.563i)9-s + (1.44 + 1.34i)10-s + (0.826 − 0.563i)11-s + (−1.48 − 0.716i)13-s + (0.988 + 1.71i)14-s + (4.36 − 1.34i)16-s + (−0.162 − 0.414i)17-s + (0.988 − 1.71i)18-s + (1.81 − 2.27i)20-s + (−1.23 − 1.54i)22-s + ⋯ |
L(s) = 1 | + (−0.147 − 1.97i)2-s + (−2.87 + 0.433i)4-s + (−0.733 + 0.680i)5-s + (−0.900 + 0.433i)7-s + (0.841 + 3.68i)8-s + (0.826 + 0.563i)9-s + (1.44 + 1.34i)10-s + (0.826 − 0.563i)11-s + (−1.48 − 0.716i)13-s + (0.988 + 1.71i)14-s + (4.36 − 1.34i)16-s + (−0.162 − 0.414i)17-s + (0.988 − 1.71i)18-s + (1.81 − 2.27i)20-s + (−1.23 − 1.54i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.972−0.232i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.972−0.232i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
−0.972−0.232i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(1649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), −0.972−0.232i)
|
Particular Values
L(21) |
≈ |
0.4920852504 |
L(21) |
≈ |
0.4920852504 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.733−0.680i)T |
| 7 | 1+(0.900−0.433i)T |
| 11 | 1+(−0.826+0.563i)T |
good | 2 | 1+(0.147+1.97i)T+(−0.988+0.149i)T2 |
| 3 | 1+(−0.826−0.563i)T2 |
| 13 | 1+(1.48+0.716i)T+(0.623+0.781i)T2 |
| 17 | 1+(0.162+0.414i)T+(−0.733+0.680i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.733+0.680i)T2 |
| 29 | 1+(0.222+0.974i)T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.955−0.294i)T2 |
| 41 | 1+(0.900−0.433i)T2 |
| 43 | 1+(0.0332−0.145i)T+(−0.900−0.433i)T2 |
| 47 | 1+(0.988−0.149i)T2 |
| 53 | 1+(−0.955+0.294i)T2 |
| 59 | 1+(1.21+1.12i)T+(0.0747+0.997i)T2 |
| 61 | 1+(−0.955−0.294i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(1.23+1.54i)T+(−0.222+0.974i)T2 |
| 73 | 1+(−0.142+1.90i)T+(−0.988−0.149i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 89 | 1+(−0.123−0.0841i)T+(0.365+0.930i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.045609750445057255466904056179, −7.999394188313837331973243254214, −7.44802792055704216702156731220, −6.23759725052968443967798785808, −5.00757818747293625639934973915, −4.34582584295565405906368454952, −3.41970520245272223437057371787, −2.86989917044289946986208211331, −2.01400885439452585163364512414, −0.40728778331936876951914854232,
1.13411094084994508549246265985, 3.58485084488143939775264049597, 4.37572848012329689026584300911, 4.63547219861261467961533953481, 5.79529468553278497755368008840, 6.78286995904782219202965349288, 7.01540680618644955146335891347, 7.60643149833483143572621683215, 8.599992419272782682275751805787, 9.228439697233635975401487620532