Properties

Label 2695.1.ck.a.1649.1
Level $2695$
Weight $1$
Character 2695.1649
Analytic conductor $1.345$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(109,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 40, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} - \cdots)\)

Embedding invariants

Embedding label 1649.1
Root \(0.365341 + 0.930874i\) of defining polynomial
Character \(\chi\) \(=\) 2695.1649
Dual form 2695.1.ck.a.219.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.147791 - 1.97213i) q^{2} +(-2.87863 + 0.433884i) q^{4} +(-0.733052 + 0.680173i) q^{5} +(-0.900969 + 0.433884i) q^{7} +(0.841040 + 3.68484i) q^{8} +(0.826239 + 0.563320i) q^{9} +O(q^{10})\) \(q+(-0.147791 - 1.97213i) q^{2} +(-2.87863 + 0.433884i) q^{4} +(-0.733052 + 0.680173i) q^{5} +(-0.900969 + 0.433884i) q^{7} +(0.841040 + 3.68484i) q^{8} +(0.826239 + 0.563320i) q^{9} +(1.44973 + 1.34515i) q^{10} +(0.826239 - 0.563320i) q^{11} +(-1.48883 - 0.716983i) q^{13} +(0.988831 + 1.71271i) q^{14} +(4.36087 - 1.34515i) q^{16} +(-0.162592 - 0.414278i) q^{17} +(0.988831 - 1.71271i) q^{18} +(1.81507 - 2.27603i) q^{20} +(-1.23305 - 1.54620i) q^{22} +(0.0747301 - 0.997204i) q^{25} +(-1.19395 + 3.04213i) q^{26} +(2.40530 - 1.63991i) q^{28} +(0.500000 - 0.866025i) q^{31} +(-1.91647 - 4.88309i) q^{32} +(-0.792981 + 0.381879i) q^{34} +(0.365341 - 0.930874i) q^{35} +(-2.62285 - 1.26310i) q^{36} +(-3.12285 - 2.12912i) q^{40} +(-0.0332580 + 0.145713i) q^{43} +(-2.13402 + 1.98008i) q^{44} +(-0.988831 + 0.149042i) q^{45} +(0.623490 - 0.781831i) q^{49} -1.97766 q^{50} +(4.59688 + 1.41795i) q^{52} +(-0.222521 + 0.974928i) q^{55} +(-2.35654 - 2.95501i) q^{56} +(-1.21135 - 1.12397i) q^{59} +(-1.78181 - 0.858075i) q^{62} +(-0.988831 - 0.149042i) q^{63} +(-5.23517 + 2.52113i) q^{64} +(1.57906 - 0.487076i) q^{65} +(0.647791 + 1.12201i) q^{68} +(-1.88980 - 0.582926i) q^{70} +(-1.23305 - 1.54620i) q^{71} +(-1.38084 + 3.51833i) q^{72} +(0.142820 - 1.90580i) q^{73} +(-0.500000 + 0.866025i) q^{77} +(-2.28181 + 3.95221i) q^{80} +(0.365341 + 0.930874i) q^{81} +(0.900969 - 0.433884i) q^{83} +(0.400969 + 0.193096i) q^{85} +(0.292280 + 0.0440542i) q^{86} +(2.77064 + 2.57078i) q^{88} +(0.123490 + 0.0841939i) q^{89} +(0.440071 + 1.92808i) q^{90} +1.65248 q^{91} +(-1.63402 - 1.11406i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{5} - 2 q^{7} - 2 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} + q^{5} - 2 q^{7} - 2 q^{8} + q^{9} - q^{10} + q^{11} - 5 q^{13} - q^{14} + 13 q^{16} + 2 q^{17} - q^{18} - 5 q^{22} + q^{25} + q^{26} + 6 q^{31} - 7 q^{32} - 3 q^{34} + q^{35} - 6 q^{40} + 2 q^{43} - 7 q^{44} + q^{45} - 2 q^{49} + 2 q^{50} + 14 q^{52} - 2 q^{55} - 9 q^{56} - q^{59} - 2 q^{62} + q^{63} - 9 q^{64} - q^{65} + 7 q^{68} - q^{70} - 5 q^{71} - 6 q^{72} - q^{73} - 6 q^{77} - 8 q^{80} + q^{81} + 2 q^{83} - 4 q^{85} + q^{86} + q^{88} - 8 q^{89} + 2 q^{90} + 2 q^{91} - q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.147791 1.97213i −0.147791 1.97213i −0.222521 0.974928i \(-0.571429\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(3\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(4\) −2.87863 + 0.433884i −2.87863 + 0.433884i
\(5\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(6\) 0 0
\(7\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(8\) 0.841040 + 3.68484i 0.841040 + 3.68484i
\(9\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(10\) 1.44973 + 1.34515i 1.44973 + 1.34515i
\(11\) 0.826239 0.563320i 0.826239 0.563320i
\(12\) 0 0
\(13\) −1.48883 0.716983i −1.48883 0.716983i −0.500000 0.866025i \(-0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(14\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(15\) 0 0
\(16\) 4.36087 1.34515i 4.36087 1.34515i
\(17\) −0.162592 0.414278i −0.162592 0.414278i 0.826239 0.563320i \(-0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(18\) 0.988831 1.71271i 0.988831 1.71271i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 1.81507 2.27603i 1.81507 2.27603i
\(21\) 0 0
\(22\) −1.23305 1.54620i −1.23305 1.54620i
\(23\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(24\) 0 0
\(25\) 0.0747301 0.997204i 0.0747301 0.997204i
\(26\) −1.19395 + 3.04213i −1.19395 + 3.04213i
\(27\) 0 0
\(28\) 2.40530 1.63991i 2.40530 1.63991i
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(32\) −1.91647 4.88309i −1.91647 4.88309i
\(33\) 0 0
\(34\) −0.792981 + 0.381879i −0.792981 + 0.381879i
\(35\) 0.365341 0.930874i 0.365341 0.930874i
\(36\) −2.62285 1.26310i −2.62285 1.26310i
\(37\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.12285 2.12912i −3.12285 2.12912i
\(41\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(42\) 0 0
\(43\) −0.0332580 + 0.145713i −0.0332580 + 0.145713i −0.988831 0.149042i \(-0.952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(44\) −2.13402 + 1.98008i −2.13402 + 1.98008i
\(45\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(46\) 0 0
\(47\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(48\) 0 0
\(49\) 0.623490 0.781831i 0.623490 0.781831i
\(50\) −1.97766 −1.97766
\(51\) 0 0
\(52\) 4.59688 + 1.41795i 4.59688 + 1.41795i
\(53\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(54\) 0 0
\(55\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(56\) −2.35654 2.95501i −2.35654 2.95501i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.21135 1.12397i −1.21135 1.12397i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(60\) 0 0
\(61\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(62\) −1.78181 0.858075i −1.78181 0.858075i
\(63\) −0.988831 0.149042i −0.988831 0.149042i
\(64\) −5.23517 + 2.52113i −5.23517 + 2.52113i
\(65\) 1.57906 0.487076i 1.57906 0.487076i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0.647791 + 1.12201i 0.647791 + 1.12201i
\(69\) 0 0
\(70\) −1.88980 0.582926i −1.88980 0.582926i
\(71\) −1.23305 1.54620i −1.23305 1.54620i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(72\) −1.38084 + 3.51833i −1.38084 + 3.51833i
\(73\) 0.142820 1.90580i 0.142820 1.90580i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) −2.28181 + 3.95221i −2.28181 + 3.95221i
\(81\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(82\) 0 0
\(83\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(84\) 0 0
\(85\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(86\) 0.292280 + 0.0440542i 0.292280 + 0.0440542i
\(87\) 0 0
\(88\) 2.77064 + 2.57078i 2.77064 + 2.57078i
\(89\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0.440071 + 1.92808i 0.440071 + 1.92808i
\(91\) 1.65248 1.65248
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.63402 1.11406i −1.63402 1.11406i
\(99\) 1.00000 1.00000
\(100\) 0.217550 + 2.90301i 0.217550 + 2.90301i
\(101\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(102\) 0 0
\(103\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(104\) 1.38980 6.08911i 1.38980 6.08911i
\(105\) 0 0
\(106\) 0 0
\(107\) 1.03030 + 0.702449i 1.03030 + 0.702449i 0.955573 0.294755i \(-0.0952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(108\) 0 0
\(109\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(110\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(111\) 0 0
\(112\) −3.34537 + 3.10405i −3.34537 + 3.10405i
\(113\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.826239 1.43109i −0.826239 1.43109i
\(118\) −2.03759 + 2.55506i −2.03759 + 2.55506i
\(119\) 0.326239 + 0.302705i 0.326239 + 0.302705i
\(120\) 0 0
\(121\) 0.365341 0.930874i 0.365341 0.930874i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.06356 + 2.70991i −1.06356 + 2.70991i
\(125\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(126\) −0.147791 + 1.97213i −0.147791 + 1.97213i
\(127\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(128\) 3.12285 + 5.40894i 3.12285 + 5.40894i
\(129\) 0 0
\(130\) −1.19395 3.04213i −1.19395 3.04213i
\(131\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.38980 0.947549i 1.38980 0.947549i
\(137\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(138\) 0 0
\(139\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(140\) −0.647791 + 2.83816i −0.647791 + 2.83816i
\(141\) 0 0
\(142\) −2.86707 + 2.66025i −2.86707 + 2.66025i
\(143\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(144\) 4.36087 + 1.34515i 4.36087 + 1.34515i
\(145\) 0 0
\(146\) −3.77960 −3.77960
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(150\) 0 0
\(151\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(152\) 0 0
\(153\) 0.0990311 0.433884i 0.0990311 0.433884i
\(154\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(155\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(156\) 0 0
\(157\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 4.72622 + 2.27603i 4.72622 + 2.27603i
\(161\) 0 0
\(162\) 1.78181 0.858075i 1.78181 0.858075i
\(163\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.988831 1.71271i −0.988831 1.71271i
\(167\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(168\) 0 0
\(169\) 1.07906 + 1.35310i 1.07906 + 1.35310i
\(170\) 0.321552 0.819301i 0.321552 0.819301i
\(171\) 0 0
\(172\) 0.0325151 0.433884i 0.0325151 0.433884i
\(173\) 0.266948 0.680173i 0.266948 0.680173i −0.733052 0.680173i \(-0.761905\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(176\) 2.84537 3.56798i 2.84537 3.56798i
\(177\) 0 0
\(178\) 0.147791 0.255981i 0.147791 0.255981i
\(179\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(180\) 2.78181 0.858075i 2.78181 0.858075i
\(181\) −1.72188 + 0.829215i −1.72188 + 0.829215i −0.733052 + 0.680173i \(0.761905\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(182\) −0.244221 3.25890i −0.244221 3.25890i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.367711 0.250701i −0.367711 0.250701i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(192\) 0 0
\(193\) −0.425270 0.131178i −0.425270 0.131178i 0.0747301 0.997204i \(-0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.45557 + 2.52113i −1.45557 + 2.52113i
\(197\) 0.730682 0.730682 0.365341 0.930874i \(-0.380952\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(198\) −0.147791 1.97213i −0.147791 1.97213i
\(199\) 0.698220 + 0.215372i 0.698220 + 0.215372i 0.623490 0.781831i \(-0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(200\) 3.73738 0.563320i 3.73738 0.563320i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −7.45705 1.12397i −7.45705 1.12397i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.23305 2.13571i 1.23305 2.13571i
\(215\) −0.0747301 0.129436i −0.0747301 0.129436i
\(216\) 0 0
\(217\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(218\) 0 0
\(219\) 0 0
\(220\) 0.217550 2.90301i 0.217550 2.90301i
\(221\) −0.0549581 + 0.733365i −0.0549581 + 0.733365i
\(222\) 0 0
\(223\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(224\) 3.84537 + 3.56798i 3.84537 + 3.56798i
\(225\) 0.623490 0.781831i 0.623490 0.781831i
\(226\) 0 0
\(227\) 0.733052 1.26968i 0.733052 1.26968i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(228\) 0 0
\(229\) −1.88980 + 0.582926i −1.88980 + 0.582926i −0.900969 + 0.433884i \(0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.97766 0.298085i −1.97766 0.298085i −0.988831 0.149042i \(-0.952381\pi\)
−0.988831 0.149042i \(-0.952381\pi\)
\(234\) −2.70018 + 1.84095i −2.70018 + 1.84095i
\(235\) 0 0
\(236\) 3.97471 + 2.70991i 3.97471 + 2.70991i
\(237\) 0 0
\(238\) 0.548760 0.688123i 0.548760 0.688123i
\(239\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(240\) 0 0
\(241\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(242\) −1.88980 0.582926i −1.88980 0.582926i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(246\) 0 0
\(247\) 0 0
\(248\) 3.61168 + 1.11406i 3.61168 + 1.11406i
\(249\) 0 0
\(250\) 1.44973 1.34515i 1.44973 1.34515i
\(251\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(252\) 2.91115 2.91115
\(253\) 0 0
\(254\) −2.03759 1.38921i −2.03759 1.38921i
\(255\) 0 0
\(256\) 5.40466 3.68484i 5.40466 3.68484i
\(257\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.33420 + 2.08724i −4.33420 + 2.08724i
\(261\) 0 0
\(262\) 0 0
\(263\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.0332580 + 0.443797i −0.0332580 + 0.443797i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(270\) 0 0
\(271\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(272\) −1.26631 1.58790i −1.26631 1.58790i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 0.866025i −0.500000 0.866025i
\(276\) 0 0
\(277\) 0.698220 + 1.77904i 0.698220 + 1.77904i 0.623490 + 0.781831i \(0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(278\) 0 0
\(279\) 0.900969 0.433884i 0.900969 0.433884i
\(280\) 3.73738 + 0.563320i 3.73738 + 0.563320i
\(281\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(282\) 0 0
\(283\) −1.48883 + 1.01507i −1.48883 + 1.01507i −0.500000 + 0.866025i \(0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(284\) 4.22037 + 3.91593i 4.22037 + 3.91593i
\(285\) 0 0
\(286\) 0.727208 + 3.18610i 0.727208 + 3.18610i
\(287\) 0 0
\(288\) 1.16728 5.11418i 1.16728 5.11418i
\(289\) 0.587862 0.545456i 0.587862 0.545456i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.415770 + 5.54807i 0.415770 + 5.54807i
\(293\) −1.46610 −1.46610 −0.733052 0.680173i \(-0.761905\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(294\) 0 0
\(295\) 1.65248 1.65248
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.0332580 0.145713i −0.0332580 0.145713i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.870312 0.131178i −0.870312 0.131178i
\(307\) 1.78181 + 0.858075i 1.78181 + 0.858075i 0.955573 + 0.294755i \(0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(308\) 1.06356 2.70991i 1.06356 2.70991i
\(309\) 0 0
\(310\) 1.88980 0.582926i 1.88980 0.582926i
\(311\) −0.535628 1.36476i −0.535628 1.36476i −0.900969 0.433884i \(-0.857143\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) 0.826239 0.563320i 0.826239 0.563320i
\(316\) 0 0
\(317\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.12285 5.40894i 2.12285 5.40894i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.45557 2.52113i −1.45557 2.52113i
\(325\) −0.826239 + 1.43109i −0.826239 + 1.43109i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.147791 0.0222759i −0.147791 0.0222759i 0.0747301 0.997204i \(-0.476190\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(332\) −2.40530 + 1.63991i −2.40530 + 1.63991i
\(333\) 0 0
\(334\) −3.26804 2.22811i −3.26804 2.22811i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.367711 + 1.61105i −0.367711 + 1.61105i 0.365341 + 0.930874i \(0.380952\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(338\) 2.50902 2.32803i 2.50902 2.32803i
\(339\) 0 0
\(340\) −1.23802 0.381879i −1.23802 0.381879i
\(341\) −0.0747301 0.997204i −0.0747301 0.997204i
\(342\) 0 0
\(343\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(344\) −0.564900 −0.564900
\(345\) 0 0
\(346\) −1.38084 0.425934i −1.38084 0.425934i
\(347\) −0.722521 + 0.108903i −0.722521 + 0.108903i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(348\) 0 0
\(349\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(350\) 1.78181 0.858075i 1.78181 0.858075i
\(351\) 0 0
\(352\) −4.33420 2.95501i −4.33420 2.95501i
\(353\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(354\) 0 0
\(355\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(356\) −0.392012 0.188783i −0.392012 0.188783i
\(357\) 0 0
\(358\) −3.52382 + 1.69698i −3.52382 + 1.69698i
\(359\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(360\) −1.38084 3.51833i −1.38084 3.51833i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 1.88980 + 3.27323i 1.88980 + 3.27323i
\(363\) 0 0
\(364\) −4.75687 + 0.716983i −4.75687 + 0.716983i
\(365\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(366\) 0 0
\(367\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(374\) −0.440071 + 0.762226i −0.440071 + 0.762226i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.32091 + 0.636119i 1.32091 + 0.636119i 0.955573 0.294755i \(-0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.44973 1.34515i −1.44973 1.34515i
\(383\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(384\) 0 0
\(385\) −0.222521 0.974928i −0.222521 0.974928i
\(386\) −0.195850 + 0.858075i −0.195850 + 0.858075i
\(387\) −0.109562 + 0.101659i −0.109562 + 0.101659i
\(388\) 0 0
\(389\) −1.40097 0.432142i −1.40097 0.432142i −0.500000 0.866025i \(-0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.40530 + 1.63991i 3.40530 + 1.63991i
\(393\) 0 0
\(394\) −0.107988 1.44100i −0.107988 1.44100i
\(395\) 0 0
\(396\) −2.87863 + 0.433884i −2.87863 + 0.433884i
\(397\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(398\) 0.321552 1.40881i 0.321552 1.40881i
\(399\) 0 0
\(400\) −1.01550 4.44920i −1.01550 4.44920i
\(401\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −1.36534 + 0.930874i −1.36534 + 0.930874i
\(404\) 0 0
\(405\) −0.900969 0.433884i −0.900969 0.433884i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(414\) 0 0
\(415\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(416\) −0.647791 + 8.64417i −0.647791 + 8.64417i
\(417\) 0 0
\(418\) 0 0
\(419\) 1.03030 + 1.29196i 1.03030 + 1.29196i 0.955573 + 0.294755i \(0.0952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(420\) 0 0
\(421\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.425270 + 0.131178i −0.425270 + 0.131178i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.27064 1.57506i −3.27064 1.57506i
\(429\) 0 0
\(430\) −0.244221 + 0.166507i −0.244221 + 0.166507i
\(431\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(432\) 0 0
\(433\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(434\) 1.97766 1.97766
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(440\) −3.77960 −3.77960
\(441\) 0.955573 0.294755i 0.955573 0.294755i
\(442\) 1.45442 1.45442
\(443\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(444\) 0 0
\(445\) −0.147791 + 0.0222759i −0.147791 + 0.0222759i
\(446\) 0 0
\(447\) 0 0
\(448\) 3.62285 4.54291i 3.62285 4.54291i
\(449\) −0.367711 1.61105i −0.367711 1.61105i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(450\) −1.63402 1.11406i −1.63402 1.11406i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −2.61232 1.25803i −2.61232 1.25803i
\(455\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(456\) 0 0
\(457\) −0.955573 + 0.294755i −0.955573 + 0.294755i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(458\) 1.42890 + 3.64078i 1.42890 + 3.64078i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(462\) 0 0
\(463\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.295582 + 3.94426i −0.295582 + 3.94426i
\(467\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(468\) 2.99936 + 3.76108i 2.99936 + 3.76108i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 3.12285 5.40894i 3.12285 5.40894i
\(473\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i
\(474\) 0 0
\(475\) 0 0
\(476\) −1.07046 0.729827i −1.07046 0.729827i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.647791 + 2.83816i −0.647791 + 2.83816i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 1.95557 0.294755i 1.95557 0.294755i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(496\) 1.01550 4.44920i 1.01550 4.44920i
\(497\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(498\) 0 0
\(499\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −2.13402 1.98008i −2.13402 1.98008i
\(501\) 0 0
\(502\) 2.43856 + 0.367554i 2.43856 + 0.367554i
\(503\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(504\) −0.282450 3.76903i −0.282450 3.76903i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.81507 + 3.14379i −1.81507 + 3.14379i
\(509\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(510\) 0 0
\(511\) 0.698220 + 1.77904i 0.698220 + 1.77904i
\(512\) −4.17161 5.23104i −4.17161 5.23104i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 3.12285 + 5.40894i 3.12285 + 5.40894i
\(521\) 0.988831 1.71271i 0.988831 1.71271i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(522\) 0 0
\(523\) 0.142820 0.0440542i 0.142820 0.0440542i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.78181 0.858075i −1.78181 0.858075i
\(527\) −0.440071 0.0663300i −0.440071 0.0663300i
\(528\) 0 0
\(529\) −0.733052 0.680173i −0.733052 0.680173i
\(530\) 0 0
\(531\) −0.367711 1.61105i −0.367711 1.61105i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.23305 + 0.185853i −1.23305 + 0.185853i
\(536\) 0 0
\(537\) 0 0
\(538\) 0.880142 0.880142
\(539\) 0.0747301 0.997204i 0.0747301 0.997204i
\(540\) 0 0
\(541\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.71135 + 1.58790i −1.71135 + 1.58790i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.425270 1.86323i −0.425270 1.86323i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −1.63402 + 1.11406i −1.63402 + 1.11406i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 3.40530 1.63991i 3.40530 1.63991i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(558\) −0.988831 1.71271i −0.988831 1.71271i
\(559\) 0.153989 0.193096i 0.153989 0.193096i
\(560\) 0.341040 4.55086i 0.341040 4.55086i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.22188 + 2.78615i 2.22188 + 2.78615i
\(567\) −0.733052 0.680173i −0.733052 0.680173i
\(568\) 4.66044 5.84401i 4.66044 5.84401i
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(572\) 4.59688 1.41795i 4.59688 1.41795i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −5.74570 0.866025i −5.74570 0.866025i
\(577\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(578\) −1.16259 1.07873i −1.16259 1.07873i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(582\) 0 0
\(583\) 0 0
\(584\) 7.14269 1.07659i 7.14269 1.07659i
\(585\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(586\) 0.216677 + 2.89135i 0.216677 + 2.89135i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −0.244221 3.25890i −0.244221 3.25890i
\(591\) 0 0
\(592\) 0 0
\(593\) −0.109562 + 0.101659i −0.109562 + 0.101659i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(594\) 0 0
\(595\) −0.445042 −0.445042
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.21135 + 0.825886i −1.21135 + 0.825886i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(600\) 0 0
\(601\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(602\) −0.282450 + 0.0871242i −0.282450 + 0.0871242i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(606\) 0 0
\(607\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.0968189 + 1.29196i −0.0968189 + 1.29196i
\(613\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(614\) 1.42890 3.64078i 1.42890 3.64078i
\(615\) 0 0
\(616\) −3.61168 1.11406i −3.61168 1.11406i
\(617\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(618\) 0 0
\(619\) 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(620\) −1.06356 2.70991i −1.06356 2.70991i
\(621\) 0 0
\(622\) −2.61232 + 1.25803i −2.61232 + 1.25803i
\(623\) −0.147791 0.0222759i −0.147791 0.0222759i
\(624\) 0 0
\(625\) −0.988831 0.149042i −0.988831 0.149042i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.23305 1.54620i −1.23305 1.54620i
\(631\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.0931869 + 1.24349i 0.0931869 + 1.24349i
\(636\) 0 0
\(637\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(638\) 0 0
\(639\) −0.147791 1.97213i −0.147791 1.97213i
\(640\) −5.96822 1.84095i −5.96822 1.84095i
\(641\) −1.23305 + 0.185853i −1.23305 + 0.185853i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(648\) −3.12285 + 2.12912i −3.12285 + 2.12912i
\(649\) −1.63402 0.246289i −1.63402 0.246289i
\(650\) 2.94440 + 1.41795i 2.94440 + 1.41795i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.19158 1.49419i 1.19158 1.49419i
\(658\) 0 0
\(659\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(660\) 0 0
\(661\) 0.0931869 1.24349i 0.0931869 1.24349i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(662\) −0.0220888 + 0.294755i −0.0220888 + 0.294755i
\(663\) 0 0
\(664\) 2.35654 + 2.95501i 2.35654 + 2.95501i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −2.91115 + 5.04225i −2.91115 + 5.04225i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(674\) 3.23154 + 0.487076i 3.23154 + 0.487076i
\(675\) 0 0
\(676\) −3.69331 3.42689i −3.69331 3.42689i
\(677\) −1.48883 1.01507i −1.48883 1.01507i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.374298 + 1.63991i −0.374298 + 1.63991i
\(681\) 0 0
\(682\) −1.95557 + 0.294755i −1.95557 + 0.294755i
\(683\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(687\) 0 0
\(688\) 0.0509719 + 0.680173i 0.0509719 + 0.680173i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.326239 0.302705i 0.326239 0.302705i −0.500000 0.866025i \(-0.666667\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(692\) −0.473329 + 2.07379i −0.473329 + 2.07379i
\(693\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(694\) 0.321552 + 1.40881i 0.321552 + 1.40881i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.45557 2.52113i −1.45557 2.52113i
\(701\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.90530 + 5.03213i −2.90530 + 5.03213i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.365341 + 0.930874i −0.365341 + 0.930874i 0.623490 + 0.781831i \(0.285714\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(710\) 0.292280 3.90021i 0.292280 3.90021i
\(711\) 0 0
\(712\) −0.206381 + 0.525850i −0.206381 + 0.525850i
\(713\) 0 0
\(714\) 0 0
\(715\) 1.03030 1.29196i 1.03030 1.29196i
\(716\) 2.87863 + 4.98593i 2.87863 + 4.98593i
\(717\) 0 0
\(718\) 0 0
\(719\) −0.425270 + 0.131178i −0.425270 + 0.131178i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(720\) −4.11168 + 1.98008i −4.11168 + 1.98008i
\(721\) 0 0
\(722\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(723\) 0 0
\(724\) 4.59688 3.13410i 4.59688 3.13410i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) 1.38980 + 6.08911i 1.38980 + 6.08911i
\(729\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(730\) 2.77064 2.57078i 2.77064 2.57078i
\(731\) 0.0657731 0.00991370i 0.0657731 0.00991370i
\(732\) 0 0
\(733\) 0.0931869 + 1.24349i 0.0931869 + 1.24349i 0.826239 + 0.563320i \(0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.367711 1.61105i −0.367711 1.61105i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.39564 1.63332i 2.39564 1.63332i
\(747\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(748\) 1.16728 + 0.562132i 1.16728 + 0.562132i
\(749\) −1.23305 0.185853i −1.23305 0.185853i
\(750\) 0 0
\(751\) 1.82624 0.563320i 1.82624 0.563320i 0.826239 0.563320i \(-0.190476\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(758\) 1.05929 2.69903i 1.05929 2.69903i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.81507 + 2.27603i −1.81507 + 2.27603i
\(765\) 0.222521 + 0.385418i 0.222521 + 0.385418i
\(766\) 0 0
\(767\) 0.997630 + 2.54192i 0.997630 + 2.54192i
\(768\) 0 0
\(769\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(770\) −1.88980 + 0.582926i −1.88980 + 0.582926i
\(771\) 0 0
\(772\) 1.28111 + 0.193096i 1.28111 + 0.193096i
\(773\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(774\) 0.216677 + 0.201047i 0.216677 + 0.201047i
\(775\) −0.826239 0.563320i −0.826239 0.563320i
\(776\) 0 0
\(777\) 0 0
\(778\) −0.645190 + 2.82676i −0.645190 + 2.82676i
\(779\) 0 0
\(780\) 0 0
\(781\) −1.88980 0.582926i −1.88980 0.582926i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.66728 4.24816i 1.66728 4.24816i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.698220 + 0.215372i 0.698220 + 0.215372i 0.623490 0.781831i \(-0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(788\) −2.10336 + 0.317031i −2.10336 + 0.317031i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.841040 + 3.68484i 0.841040 + 3.68484i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −2.10336 0.317031i −2.10336 0.317031i
\(797\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.01265 + 1.54620i −5.01265 + 1.54620i
\(801\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i
\(802\) 0.147791 0.255981i 0.147791 0.255981i
\(803\) −0.955573 1.65510i −0.955573 1.65510i
\(804\) 0 0
\(805\) 0 0
\(806\) 2.03759 + 2.55506i 2.03759 + 2.55506i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(810\) −0.722521 + 1.84095i −0.722521 + 1.84095i
\(811\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(820\) 0 0
\(821\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(822\) 0 0
\(823\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.727208 3.18610i 0.727208 3.18610i
\(827\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(828\) 0 0
\(829\) −1.63402 + 0.246289i −1.63402 + 0.246289i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(830\) 1.88980 + 0.582926i 1.88980 + 0.582926i
\(831\) 0 0
\(832\) 9.60189 9.60189
\(833\) −0.425270 0.131178i −0.425270 0.131178i
\(834\) 0 0
\(835\) 0.149460 + 1.99441i 0.149460 + 1.99441i
\(836\) 0 0
\(837\) 0 0
\(838\) 2.39564 2.22283i 2.39564 2.22283i
\(839\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) −0.222521 0.974928i −0.222521 0.974928i
\(842\) 0.727208 + 0.495802i 0.727208 + 0.495802i
\(843\) 0 0
\(844\) 0 0
\(845\) −1.71135 0.257945i −1.71135 0.257945i
\(846\) 0 0
\(847\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.321552 + 0.819301i 0.321552 + 0.819301i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.72188 + 4.38729i −1.72188 + 4.38729i
\(857\) −0.147791 + 1.97213i −0.147791 + 1.97213i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(858\) 0 0
\(859\) −0.162592 + 0.414278i −0.162592 + 0.414278i −0.988831 0.149042i \(-0.952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(860\) 0.271281 + 0.340175i 0.271281 + 0.340175i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 0 0
\(865\) 0.266948 + 0.680173i 0.266948 + 0.680173i
\(866\) 0 0
\(867\) 0 0
\(868\) −0.217550 2.90301i −0.217550 2.90301i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.900969 0.433884i −0.900969 0.433884i
\(876\) 0 0
\(877\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.341040 + 4.55086i 0.341040 + 4.55086i
\(881\) 0.730682 0.730682 0.365341 0.930874i \(-0.380952\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(882\) −0.722521 1.84095i −0.722521 1.84095i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −0.159991 2.13493i −0.159991 2.13493i
\(885\) 0 0
\(886\) 0 0
\(887\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(888\) 0 0
\(889\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(890\) 0.0657731 + 0.288171i 0.0657731 + 0.288171i
\(891\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(896\) −5.16044 3.51833i −5.16044 3.51833i
\(897\) 0 0
\(898\) −3.12285 + 0.963272i −3.12285 + 0.963272i
\(899\) 0 0
\(900\) −1.45557 + 2.52113i −1.45557 + 2.52113i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.698220 1.77904i 0.698220 1.77904i
\(906\) 0 0
\(907\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(908\) −1.55929 + 3.97301i −1.55929 + 3.97301i
\(909\) 0 0
\(910\) 2.39564 + 2.22283i 2.39564 + 2.22283i
\(911\) 0.455573 0.571270i 0.455573 0.571270i −0.500000 0.866025i \(-0.666667\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(912\) 0 0
\(913\) 0.500000 0.866025i 0.500000 0.866025i
\(914\) 0.722521 + 1.84095i 0.722521 + 1.84095i
\(915\) 0 0
\(916\) 5.18711 2.49798i 5.18711 2.49798i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.727208 + 3.18610i 0.727208 + 3.18610i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.0931869 + 1.24349i 0.0931869 + 1.24349i 0.826239 + 0.563320i \(0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5.82229 5.82229
\(933\) 0 0
\(934\) 0 0
\(935\) 0.440071 0.0663300i 0.440071 0.0663300i
\(936\) 4.57842 4.24816i 4.57842 4.24816i
\(937\) −0.367711 + 1.61105i −0.367711 + 1.61105i 0.365341 + 0.930874i \(0.380952\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −6.79446 3.27204i −6.79446 3.27204i
\(945\) 0 0
\(946\) 0.266310 0.128248i 0.266310 0.128248i
\(947\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(948\) 0 0
\(949\) −1.57906 + 2.73502i −1.57906 + 2.73502i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.841040 + 1.45672i −0.841040 + 1.45672i
\(953\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(954\) 0 0
\(955\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0.455573 + 1.16078i 0.455573 + 1.16078i
\(964\) 0 0
\(965\) 0.400969 0.193096i 0.400969 0.193096i
\(966\) 0 0
\(967\) −1.72188 0.829215i −1.72188 0.829215i −0.988831 0.149042i \(-0.952381\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(968\) 3.73738 + 0.563320i 3.73738 + 0.563320i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.603718 + 0.411608i 0.603718 + 0.411608i 0.826239 0.563320i \(-0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(978\) 0 0
\(979\) 0.149460 0.149460
\(980\) −0.647791 2.83816i −0.647791 2.83816i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(984\) 0 0
\(985\) −0.535628 + 0.496990i −0.535628 + 0.496990i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 1.44973 + 1.34515i 1.44973 + 1.34515i
\(991\) −0.367711 + 0.250701i −0.367711 + 0.250701i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(992\) −5.18711 0.781831i −5.18711 0.781831i
\(993\) 0 0
\(994\) 1.42890 3.64078i 1.42890 3.64078i
\(995\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(996\) 0 0
\(997\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i 0.955573 0.294755i \(-0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(998\) 0.147791 0.255981i 0.147791 0.255981i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.a.1649.1 yes 12
5.4 even 2 2695.1.ck.b.1649.1 yes 12
11.10 odd 2 2695.1.ck.b.1649.1 yes 12
49.23 even 21 inner 2695.1.ck.a.219.1 12
55.54 odd 2 CM 2695.1.ck.a.1649.1 yes 12
245.219 even 42 2695.1.ck.b.219.1 yes 12
539.219 odd 42 2695.1.ck.b.219.1 yes 12
2695.219 odd 42 inner 2695.1.ck.a.219.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.a.219.1 12 49.23 even 21 inner
2695.1.ck.a.219.1 12 2695.219 odd 42 inner
2695.1.ck.a.1649.1 yes 12 1.1 even 1 trivial
2695.1.ck.a.1649.1 yes 12 55.54 odd 2 CM
2695.1.ck.b.219.1 yes 12 245.219 even 42
2695.1.ck.b.219.1 yes 12 539.219 odd 42
2695.1.ck.b.1649.1 yes 12 5.4 even 2
2695.1.ck.b.1649.1 yes 12 11.10 odd 2