L(s) = 1 | + (−0.496 + 1.26i)2-s + (−0.623 − 0.578i)4-s + (−0.826 − 0.563i)5-s + (0.781 + 0.623i)7-s + (−0.183 + 0.0882i)8-s + (−0.988 − 0.149i)9-s + (1.12 − 0.766i)10-s + (0.988 − 0.149i)11-s + (0.185 + 0.233i)13-s + (−1.17 + 0.680i)14-s + (−0.0842 − 1.12i)16-s + (0.829 + 0.255i)17-s + (0.680 − 1.17i)18-s + (0.189 + 0.829i)20-s + (−0.302 + 1.32i)22-s + ⋯ |
L(s) = 1 | + (−0.496 + 1.26i)2-s + (−0.623 − 0.578i)4-s + (−0.826 − 0.563i)5-s + (0.781 + 0.623i)7-s + (−0.183 + 0.0882i)8-s + (−0.988 − 0.149i)9-s + (1.12 − 0.766i)10-s + (0.988 − 0.149i)11-s + (0.185 + 0.233i)13-s + (−1.17 + 0.680i)14-s + (−0.0842 − 1.12i)16-s + (0.829 + 0.255i)17-s + (0.680 − 1.17i)18-s + (0.189 + 0.829i)20-s + (−0.302 + 1.32i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.718−0.695i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.718−0.695i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
−0.718−0.695i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(879,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), −0.718−0.695i)
|
Particular Values
L(21) |
≈ |
0.7841336547 |
L(21) |
≈ |
0.7841336547 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.826+0.563i)T |
| 7 | 1+(−0.781−0.623i)T |
| 11 | 1+(−0.988+0.149i)T |
good | 2 | 1+(0.496−1.26i)T+(−0.733−0.680i)T2 |
| 3 | 1+(0.988+0.149i)T2 |
| 13 | 1+(−0.185−0.233i)T+(−0.222+0.974i)T2 |
| 17 | 1+(−0.829−0.255i)T+(0.826+0.563i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.826+0.563i)T2 |
| 29 | 1+(0.900−0.433i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.0747+0.997i)T2 |
| 41 | 1+(−0.623+0.781i)T2 |
| 43 | 1+(−1.67−0.807i)T+(0.623+0.781i)T2 |
| 47 | 1+(0.733+0.680i)T2 |
| 53 | 1+(−0.0747−0.997i)T2 |
| 59 | 1+(1.63−1.11i)T+(0.365−0.930i)T2 |
| 61 | 1+(−0.0747+0.997i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.326+1.42i)T+(−0.900−0.433i)T2 |
| 73 | 1+(−0.728−1.85i)T+(−0.733+0.680i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(1.07−1.35i)T+(−0.222−0.974i)T2 |
| 89 | 1+(−0.722−0.108i)T+(0.955+0.294i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.015876718739275069251284408156, −8.420169480782557111754960258682, −7.923191160619563044525493804799, −7.20826901231741039267182770211, −6.23754318165434744791557249853, −5.64890072029216468835447608492, −4.92376732702791931622739943492, −3.89060894563345141035451981089, −2.83925595087060949420068231606, −1.22416857843272225039711025874,
0.69857111474213093599801790275, 1.90597792739310737185477140372, 2.96763787266837347097950731164, 3.67632825674986544835017254663, 4.37780987389798907681202849478, 5.62203148522713636132939400721, 6.52920568139613575052875683193, 7.52039538294681336767129692881, 8.071765596379128686187035036100, 8.895108949436773114714943859409