L(s) = 1 | + (−0.496 + 1.26i)2-s + (−0.623 − 0.578i)4-s + (−0.826 − 0.563i)5-s + (0.781 + 0.623i)7-s + (−0.183 + 0.0882i)8-s + (−0.988 − 0.149i)9-s + (1.12 − 0.766i)10-s + (0.988 − 0.149i)11-s + (0.185 + 0.233i)13-s + (−1.17 + 0.680i)14-s + (−0.0842 − 1.12i)16-s + (0.829 + 0.255i)17-s + (0.680 − 1.17i)18-s + (0.189 + 0.829i)20-s + (−0.302 + 1.32i)22-s + ⋯ |
L(s) = 1 | + (−0.496 + 1.26i)2-s + (−0.623 − 0.578i)4-s + (−0.826 − 0.563i)5-s + (0.781 + 0.623i)7-s + (−0.183 + 0.0882i)8-s + (−0.988 − 0.149i)9-s + (1.12 − 0.766i)10-s + (0.988 − 0.149i)11-s + (0.185 + 0.233i)13-s + (−1.17 + 0.680i)14-s + (−0.0842 − 1.12i)16-s + (0.829 + 0.255i)17-s + (0.680 − 1.17i)18-s + (0.189 + 0.829i)20-s + (−0.302 + 1.32i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7841336547\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7841336547\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.826 + 0.563i)T \) |
| 7 | \( 1 + (-0.781 - 0.623i)T \) |
| 11 | \( 1 + (-0.988 + 0.149i)T \) |
good | 2 | \( 1 + (0.496 - 1.26i)T + (-0.733 - 0.680i)T^{2} \) |
| 3 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 13 | \( 1 + (-0.185 - 0.233i)T + (-0.222 + 0.974i)T^{2} \) |
| 17 | \( 1 + (-0.829 - 0.255i)T + (0.826 + 0.563i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-1.67 - 0.807i)T + (0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 53 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 59 | \( 1 + (1.63 - 1.11i)T + (0.365 - 0.930i)T^{2} \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.326 + 1.42i)T + (-0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.728 - 1.85i)T + (-0.733 + 0.680i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1.07 - 1.35i)T + (-0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.722 - 0.108i)T + (0.955 + 0.294i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.015876718739275069251284408156, −8.420169480782557111754960258682, −7.923191160619563044525493804799, −7.20826901231741039267182770211, −6.23754318165434744791557249853, −5.64890072029216468835447608492, −4.92376732702791931622739943492, −3.89060894563345141035451981089, −2.83925595087060949420068231606, −1.22416857843272225039711025874,
0.69857111474213093599801790275, 1.90597792739310737185477140372, 2.96763787266837347097950731164, 3.67632825674986544835017254663, 4.37780987389798907681202849478, 5.62203148522713636132939400721, 6.52920568139613575052875683193, 7.52039538294681336767129692881, 8.071765596379128686187035036100, 8.895108949436773114714943859409