Properties

Label 2695.1.ck.c
Level $2695$
Weight $1$
Character orbit 2695.ck
Analytic conductor $1.345$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(109,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 40, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{84}^{23} + \zeta_{84}^{15}) q^{2} + ( - \zeta_{84}^{38} + \cdots - \zeta_{84}^{4}) q^{4}+ \cdots + \zeta_{84}^{16} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{84}^{23} + \zeta_{84}^{15}) q^{2} + ( - \zeta_{84}^{38} + \cdots - \zeta_{84}^{4}) q^{4}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9} - 2 q^{11} - 6 q^{14} - 26 q^{16} + 8 q^{20} + 2 q^{25} + 6 q^{26} - 12 q^{31} - 14 q^{34} - 8 q^{36} - 18 q^{44} - 2 q^{45} + 4 q^{49} - 4 q^{55} + 14 q^{56} - 2 q^{59} - 10 q^{64} - 6 q^{70} - 10 q^{71} + 12 q^{80} + 2 q^{81} - 6 q^{86} + 16 q^{89} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(\zeta_{84}^{16}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.930874 0.365341i
0.930874 + 0.365341i
0.680173 0.733052i
−0.680173 + 0.733052i
−0.294755 0.955573i
0.294755 + 0.955573i
−0.563320 0.826239i
0.563320 + 0.826239i
−0.563320 + 0.826239i
0.563320 0.826239i
−0.930874 + 0.365341i
0.930874 0.365341i
−0.997204 + 0.0747301i
0.997204 0.0747301i
0.149042 + 0.988831i
−0.149042 0.988831i
0.680173 + 0.733052i
−0.680173 0.733052i
−0.997204 0.0747301i
0.997204 + 0.0747301i
−1.46200 + 1.35654i 0 0.222521 2.96934i −0.365341 + 0.930874i 0 0.974928 + 0.222521i 2.45921 + 3.08375i 0.955573 0.294755i −0.728639 1.85654i
109.2 1.46200 1.35654i 0 0.222521 2.96934i −0.365341 + 0.930874i 0 −0.974928 0.222521i −2.45921 3.08375i 0.955573 0.294755i 0.728639 + 1.85654i
219.1 −0.0222759 + 0.297251i 0 0.900969 + 0.135799i 0.733052 + 0.680173i 0 0.433884 0.900969i −0.126766 + 0.555400i 0.826239 0.563320i −0.218511 + 0.202749i
219.2 0.0222759 0.297251i 0 0.900969 + 0.135799i 0.733052 + 0.680173i 0 −0.433884 + 0.900969i 0.126766 0.555400i 0.826239 0.563320i 0.218511 0.202749i
494.1 −1.53825 1.04876i 0 0.900969 + 2.29563i −0.955573 + 0.294755i 0 −0.433884 + 0.900969i 0.607374 2.66108i 0.0747301 + 0.997204i 1.77904 + 0.548760i
494.2 1.53825 + 1.04876i 0 0.900969 + 2.29563i −0.955573 + 0.294755i 0 0.433884 0.900969i −0.607374 + 2.66108i 0.0747301 + 0.997204i −1.77904 0.548760i
604.1 −0.496990 1.26631i 0 −0.623490 + 0.578514i −0.826239 + 0.563320i 0 0.781831 0.623490i −0.183183 0.0882162i −0.988831 + 0.149042i 1.12397 + 0.766310i
604.2 0.496990 + 1.26631i 0 −0.623490 + 0.578514i −0.826239 + 0.563320i 0 −0.781831 + 0.623490i 0.183183 + 0.0882162i −0.988831 + 0.149042i −1.12397 0.766310i
879.1 −0.496990 + 1.26631i 0 −0.623490 0.578514i −0.826239 0.563320i 0 0.781831 + 0.623490i −0.183183 + 0.0882162i −0.988831 0.149042i 1.12397 0.766310i
879.2 0.496990 1.26631i 0 −0.623490 0.578514i −0.826239 0.563320i 0 −0.781831 0.623490i 0.183183 0.0882162i −0.988831 0.149042i −1.12397 + 0.766310i
989.1 −1.46200 1.35654i 0 0.222521 + 2.96934i −0.365341 0.930874i 0 0.974928 0.222521i 2.45921 3.08375i 0.955573 + 0.294755i −0.728639 + 1.85654i
989.2 1.46200 + 1.35654i 0 0.222521 + 2.96934i −0.365341 0.930874i 0 −0.974928 + 0.222521i −2.45921 + 3.08375i 0.955573 + 0.294755i 0.728639 1.85654i
1264.1 −0.582926 0.0878620i 0 −0.623490 0.192321i −0.0747301 0.997204i 0 −0.781831 + 0.623490i 0.877681 + 0.422669i 0.365341 0.930874i −0.0440542 + 0.587862i
1264.2 0.582926 + 0.0878620i 0 −0.623490 0.192321i −0.0747301 0.997204i 0 0.781831 0.623490i −0.877681 0.422669i 0.365341 0.930874i 0.0440542 0.587862i
1374.1 −1.07659 0.332083i 0 0.222521 + 0.151712i 0.988831 0.149042i 0 0.974928 + 0.222521i 0.513267 + 0.643616i −0.733052 0.680173i −1.11406 0.167917i
1374.2 1.07659 + 0.332083i 0 0.222521 + 0.151712i 0.988831 0.149042i 0 −0.974928 0.222521i −0.513267 0.643616i −0.733052 0.680173i 1.11406 + 0.167917i
1649.1 −0.0222759 0.297251i 0 0.900969 0.135799i 0.733052 0.680173i 0 0.433884 + 0.900969i −0.126766 0.555400i 0.826239 + 0.563320i −0.218511 0.202749i
1649.2 0.0222759 + 0.297251i 0 0.900969 0.135799i 0.733052 0.680173i 0 −0.433884 0.900969i 0.126766 + 0.555400i 0.826239 + 0.563320i 0.218511 + 0.202749i
1759.1 −0.582926 + 0.0878620i 0 −0.623490 + 0.192321i −0.0747301 + 0.997204i 0 −0.781831 0.623490i 0.877681 0.422669i 0.365341 + 0.930874i −0.0440542 0.587862i
1759.2 0.582926 0.0878620i 0 −0.623490 + 0.192321i −0.0747301 + 0.997204i 0 0.781831 + 0.623490i −0.877681 + 0.422669i 0.365341 + 0.930874i 0.0440542 + 0.587862i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
11.b odd 2 1 inner
49.g even 21 1 inner
245.t even 42 1 inner
539.x odd 42 1 inner
2695.ck odd 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2695.1.ck.c 24
5.b even 2 1 inner 2695.1.ck.c 24
11.b odd 2 1 inner 2695.1.ck.c 24
49.g even 21 1 inner 2695.1.ck.c 24
55.d odd 2 1 CM 2695.1.ck.c 24
245.t even 42 1 inner 2695.1.ck.c 24
539.x odd 42 1 inner 2695.1.ck.c 24
2695.ck odd 42 1 inner 2695.1.ck.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2695.1.ck.c 24 1.a even 1 1 trivial
2695.1.ck.c 24 5.b even 2 1 inner
2695.1.ck.c 24 11.b odd 2 1 inner
2695.1.ck.c 24 49.g even 21 1 inner
2695.1.ck.c 24 55.d odd 2 1 CM
2695.1.ck.c 24 245.t even 42 1 inner
2695.1.ck.c 24 539.x odd 42 1 inner
2695.1.ck.c 24 2695.ck odd 42 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 3 T_{2}^{22} + 28 T_{2}^{20} - 43 T_{2}^{18} + 171 T_{2}^{16} - 28 T_{2}^{14} + 148 T_{2}^{12} + \cdots + 1 \) acting on \(S_{1}^{\mathrm{new}}(2695, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{24} \) Copy content Toggle raw display
$5$ \( (T^{12} + T^{11} - T^{9} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{12} - T^{10} + T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{12} + T^{11} - T^{9} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{24} - T^{22} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{24} - 14 T^{20} + \cdots + 2401 \) Copy content Toggle raw display
$19$ \( T^{24} \) Copy content Toggle raw display
$23$ \( T^{24} \) Copy content Toggle raw display
$29$ \( T^{24} \) Copy content Toggle raw display
$31$ \( (T^{2} + T + 1)^{12} \) Copy content Toggle raw display
$37$ \( T^{24} \) Copy content Toggle raw display
$41$ \( T^{24} \) Copy content Toggle raw display
$43$ \( T^{24} + 6 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{24} \) Copy content Toggle raw display
$53$ \( T^{24} \) Copy content Toggle raw display
$59$ \( (T^{12} + T^{11} - T^{9} + \cdots + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{24} \) Copy content Toggle raw display
$67$ \( T^{24} \) Copy content Toggle raw display
$71$ \( (T^{12} + 5 T^{11} + \cdots + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{24} \) Copy content Toggle raw display
$83$ \( (T^{12} + 3 T^{10} + \cdots + 729)^{2} \) Copy content Toggle raw display
$89$ \( (T^{12} - 8 T^{11} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{24} \) Copy content Toggle raw display
show more
show less