L(s) = 1 | + (−1.46 − 1.35i)2-s + (0.222 + 2.96i)4-s + (−0.365 − 0.930i)5-s + (0.974 − 0.222i)7-s + (2.45 − 3.08i)8-s + (0.955 + 0.294i)9-s + (−0.728 + 1.85i)10-s + (−0.955 + 0.294i)11-s + (0.131 − 0.574i)13-s + (−1.72 − 0.997i)14-s + (−4.83 + 0.728i)16-s + (−1.29 − 0.880i)17-s + (−0.997 − 1.72i)18-s + (2.68 − 1.29i)20-s + (1.79 + 0.865i)22-s + ⋯ |
L(s) = 1 | + (−1.46 − 1.35i)2-s + (0.222 + 2.96i)4-s + (−0.365 − 0.930i)5-s + (0.974 − 0.222i)7-s + (2.45 − 3.08i)8-s + (0.955 + 0.294i)9-s + (−0.728 + 1.85i)10-s + (−0.955 + 0.294i)11-s + (0.131 − 0.574i)13-s + (−1.72 − 0.997i)14-s + (−4.83 + 0.728i)16-s + (−1.29 − 0.880i)17-s + (−0.997 − 1.72i)18-s + (2.68 − 1.29i)20-s + (1.79 + 0.865i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4608599522\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4608599522\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.365 + 0.930i)T \) |
| 7 | \( 1 + (-0.974 + 0.222i)T \) |
| 11 | \( 1 + (0.955 - 0.294i)T \) |
good | 2 | \( 1 + (1.46 + 1.35i)T + (0.0747 + 0.997i)T^{2} \) |
| 3 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 13 | \( 1 + (-0.131 + 0.574i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + (1.29 + 0.880i)T + (0.365 + 0.930i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.848 + 1.06i)T + (-0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 53 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 59 | \( 1 + (-0.698 + 1.77i)T + (-0.733 - 0.680i)T^{2} \) |
| 61 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.134 + 0.0648i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.218 - 0.202i)T + (0.0747 - 0.997i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.385 + 1.68i)T + (-0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-1.40 - 0.432i)T + (0.826 + 0.563i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.717773005538867618088674222005, −8.078575599378339396369175324636, −7.59132520341507262272280744509, −6.97986014348315848697568218591, −5.05189737490408896542096342273, −4.48927545386794456644851242116, −3.66163276322341407091501170582, −2.34782010463142967799150504031, −1.70514066582846541918155187286, −0.50055968809830891596922625533,
1.46450815457367865343857866523, 2.35325555972764351483042499730, 4.20238872736099066646764394851, 4.99280711236762921201177810659, 5.96143033302811143258588506103, 6.67467110769857406111841859948, 7.20631311632882000695368066452, 7.904120954415321436256724971740, 8.475335364938012260808306453224, 9.130272294774618139451082753040