L(s) = 1 | + (−1.46 − 1.35i)2-s + (0.222 + 2.96i)4-s + (−0.365 − 0.930i)5-s + (0.974 − 0.222i)7-s + (2.45 − 3.08i)8-s + (0.955 + 0.294i)9-s + (−0.728 + 1.85i)10-s + (−0.955 + 0.294i)11-s + (0.131 − 0.574i)13-s + (−1.72 − 0.997i)14-s + (−4.83 + 0.728i)16-s + (−1.29 − 0.880i)17-s + (−0.997 − 1.72i)18-s + (2.68 − 1.29i)20-s + (1.79 + 0.865i)22-s + ⋯ |
L(s) = 1 | + (−1.46 − 1.35i)2-s + (0.222 + 2.96i)4-s + (−0.365 − 0.930i)5-s + (0.974 − 0.222i)7-s + (2.45 − 3.08i)8-s + (0.955 + 0.294i)9-s + (−0.728 + 1.85i)10-s + (−0.955 + 0.294i)11-s + (0.131 − 0.574i)13-s + (−1.72 − 0.997i)14-s + (−4.83 + 0.728i)16-s + (−1.29 − 0.880i)17-s + (−0.997 − 1.72i)18-s + (2.68 − 1.29i)20-s + (1.79 + 0.865i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.999−0.0427i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.999−0.0427i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
−0.999−0.0427i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(989,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), −0.999−0.0427i)
|
Particular Values
L(21) |
≈ |
0.4608599522 |
L(21) |
≈ |
0.4608599522 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.365+0.930i)T |
| 7 | 1+(−0.974+0.222i)T |
| 11 | 1+(0.955−0.294i)T |
good | 2 | 1+(1.46+1.35i)T+(0.0747+0.997i)T2 |
| 3 | 1+(−0.955−0.294i)T2 |
| 13 | 1+(−0.131+0.574i)T+(−0.900−0.433i)T2 |
| 17 | 1+(1.29+0.880i)T+(0.365+0.930i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.365+0.930i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.988+0.149i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.848+1.06i)T+(−0.222+0.974i)T2 |
| 47 | 1+(−0.0747−0.997i)T2 |
| 53 | 1+(0.988−0.149i)T2 |
| 59 | 1+(−0.698+1.77i)T+(−0.733−0.680i)T2 |
| 61 | 1+(0.988+0.149i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(0.134+0.0648i)T+(0.623+0.781i)T2 |
| 73 | 1+(0.218−0.202i)T+(0.0747−0.997i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.385+1.68i)T+(−0.900+0.433i)T2 |
| 89 | 1+(−1.40−0.432i)T+(0.826+0.563i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.717773005538867618088674222005, −8.078575599378339396369175324636, −7.59132520341507262272280744509, −6.97986014348315848697568218591, −5.05189737490408896542096342273, −4.48927545386794456644851242116, −3.66163276322341407091501170582, −2.34782010463142967799150504031, −1.70514066582846541918155187286, −0.50055968809830891596922625533,
1.46450815457367865343857866523, 2.35325555972764351483042499730, 4.20238872736099066646764394851, 4.99280711236762921201177810659, 5.96143033302811143258588506103, 6.67467110769857406111841859948, 7.20631311632882000695368066452, 7.904120954415321436256724971740, 8.475335364938012260808306453224, 9.130272294774618139451082753040