L(s) = 1 | − 8·2-s + 32·4-s + 12·5-s − 8·7-s − 80·8-s − 96·10-s − 40·11-s − 24·13-s + 64·14-s + 120·16-s + 8·17-s + 384·20-s + 320·22-s − 16·23-s + 80·25-s + 192·26-s − 256·28-s − 64·31-s − 32·32-s − 64·34-s − 96·35-s − 24·37-s − 960·40-s + 56·41-s − 72·43-s − 1.28e3·44-s + 128·46-s + ⋯ |
L(s) = 1 | − 4·2-s + 8·4-s + 12/5·5-s − 8/7·7-s − 10·8-s − 9.59·10-s − 3.63·11-s − 1.84·13-s + 32/7·14-s + 15/2·16-s + 8/17·17-s + 96/5·20-s + 14.5·22-s − 0.695·23-s + 16/5·25-s + 7.38·26-s − 9.14·28-s − 2.06·31-s − 32-s − 1.88·34-s − 2.74·35-s − 0.648·37-s − 24·40-s + 1.36·41-s − 1.67·43-s − 29.0·44-s + 2.78·46-s + ⋯ |
Λ(s)=(=((28⋅324⋅58)s/2ΓC(s)8L(s)Λ(3−s)
Λ(s)=(=((28⋅324⋅58)s/2ΓC(s+1)8L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
0.2748455110 |
L(21) |
≈ |
0.2748455110 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+pT+pT2)4 |
| 3 | 1 |
| 5 | 1−12T+64T2−108T3−24pT4−108p2T5+64p4T6−12p6T7+p8T8 |
good | 7 | 1+8T+32T2+256T3−3442T4−27464T5−76800T6−207864T7+5077843T8−207864p2T9−76800p4T10−27464p6T11−3442p8T12+256p10T13+32p12T14+8p14T15+p16T16 |
| 11 | (1+20T+400T2+4340T3+55768T4+4340p2T5+400p4T6+20p6T7+p8T8)2 |
| 13 | 1+24T+288T2+5856T3+3622pT4−417240T5−6428160T6−165397320T7−3701745165T8−165397320p2T9−6428160p4T10−417240p6T11+3622p9T12+5856p10T13+288p12T14+24p14T15+p16T16 |
| 17 | 1−8T+32T2+7832T3−71596T4−403384T5+36188256T6+64357608T7+158386534T8+64357608p2T9+36188256p4T10−403384p6T11−71596p8T12+7832p10T13+32p12T14−8p14T15+p16T16 |
| 19 | 1−580T2+475930T4−192894064T6+91634293315T8−192894064p4T10+475930p8T12−580p12T14+p16T16 |
| 23 | 1+16T+128T2+10040T3+228752T4−2307400T5−15797856T6−601862832T7−3438620990T8−601862832p2T9−15797856p4T10−2307400p6T11+228752p8T12+10040p10T13+128p12T14+16p14T15+p16T16 |
| 29 | 1−3760T2+7513360T4−10124362384T6+9927642064450T8−10124362384p4T10+7513360p8T12−3760p12T14+p16T16 |
| 31 | (1+32T+1384T2−19744T3−216494T4−19744p2T5+1384p4T6+32p6T7+p8T8)2 |
| 37 | 1+24T+288T2+62016T3−1193810T4−54832824T5+950821632T6−7540071336T7+489879159603T8−7540071336p2T9+950821632p4T10−54832824p6T11−1193810p8T12+62016p10T13+288p12T14+24p14T15+p16T16 |
| 41 | (1−28T+4480T2−2372pT3+9455128T4−2372p3T5+4480p4T6−28p6T7+p8T8)2 |
| 43 | 1+72T+2592T2+39960T3+5556412T4+548106696T5+25859863008T6+705930936408T7+15548175298374T8+705930936408p2T9+25859863008p4T10+548106696p6T11+5556412p8T12+39960p10T13+2592p12T14+72p14T15+p16T16 |
| 47 | 1+124416T3+6072004T4+373248pT5+7739670528T6+680045663232T7+6691298905734T8+680045663232p2T9+7739670528p4T10+373248p7T11+6072004p8T12+124416p10T13+p16T16 |
| 53 | 1+80T+3200T2+292120T3+10074896T4−402405800T5−21765084000T6−2335299106800T7−229685261539070T8−2335299106800p2T9−21765084000p4T10−402405800p6T11+10074896p8T12+292120p10T13+3200p12T14+80p14T15+p16T16 |
| 59 | 1−14008T2+100975756T4−492995752648T6+1888076779441894T8−492995752648p4T10+100975756p8T12−14008p12T14+p16T16 |
| 61 | (1−108T+12490T2−969552T3+68045523T4−969552p2T5+12490p4T6−108p6T7+p8T8)2 |
| 67 | 1−136T+9248T2−705536T3+33707342T4+897952072T5−184956456960T6+22832526785592T7−2128448215323821T8+22832526785592p2T9−184956456960p4T10+897952072p6T11+33707342p8T12−705536p10T13+9248p12T14−136p14T15+p16T16 |
| 71 | (1+28T+16048T2+231316T3+109038184T4+231316p2T5+16048p4T6+28p6T7+p8T8)2 |
| 73 | 1−368T+67712T2−8839312T3+943013726T4−87425766400T5+7386054936960T6−587580358449120T7+44199309763992355T8−587580358449120p2T9+7386054936960p4T10−87425766400p6T11+943013726p8T12−8839312p10T13+67712p12T14−368p14T15+p16T16 |
| 79 | 1−25340T2+370619530T4−3658708310384T6+26467945053296275T8−3658708310384p4T10+370619530p8T12−25340p12T14+p16T16 |
| 83 | 1−168T+14112T2−916800T3−16348688T4+4879673856T5−168811402752T6−16030525612392T7+3571925738115714T8−16030525612392p2T9−168811402752p4T10+4879673856p6T11−16348688p8T12−916800p10T13+14112p12T14−168p14T15+p16T16 |
| 89 | 1−34744T2+427201228T4−1863800468296T6+2580261126216742T8−1863800468296p4T10+427201228p8T12−34744p12T14+p16T16 |
| 97 | 1+312T+48672T2+6967680T3+1062851086T4+133636973544T5+14237929979136T6+1553115219249528T7+162662200396802835T8+1553115219249528p2T9+14237929979136p4T10+133636973544p6T11+1062851086p8T12+6967680p10T13+48672p12T14+312p14T15+p16T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.22484041655693816929755836648, −5.21163872928654980305866265414, −4.76584703474072910500199190211, −4.75543939025247428031016259734, −4.69657934892309397250991694702, −4.50792331068814571894094624087, −4.20038646135608457859117084791, −3.78046633505642825787948939473, −3.69857492196017408664227125299, −3.53334088993581534931794482628, −3.33220308286275044153637287016, −3.18139463178982154775879454087, −2.74639128598358044864235028200, −2.66993606969624752926930020673, −2.61131573476276352897702861920, −2.34437271974939728226819702891, −2.15557169184256291185029624561, −2.02281418403474007643836066484, −2.01000971734080356047765334173, −1.59608802808158665060268182157, −1.52903910314353430013784854878, −0.826156839722551317834885956186, −0.67161685326983419943729563936, −0.40016101647461352776988988529, −0.30464754717572462909757076254,
0.30464754717572462909757076254, 0.40016101647461352776988988529, 0.67161685326983419943729563936, 0.826156839722551317834885956186, 1.52903910314353430013784854878, 1.59608802808158665060268182157, 2.01000971734080356047765334173, 2.02281418403474007643836066484, 2.15557169184256291185029624561, 2.34437271974939728226819702891, 2.61131573476276352897702861920, 2.66993606969624752926930020673, 2.74639128598358044864235028200, 3.18139463178982154775879454087, 3.33220308286275044153637287016, 3.53334088993581534931794482628, 3.69857492196017408664227125299, 3.78046633505642825787948939473, 4.20038646135608457859117084791, 4.50792331068814571894094624087, 4.69657934892309397250991694702, 4.75543939025247428031016259734, 4.76584703474072910500199190211, 5.21163872928654980305866265414, 5.22484041655693816929755836648
Plot not available for L-functions of degree greater than 10.