L(s) = 1 | + (0.657 − 0.657i)3-s + (13.8 − 13.8i)5-s + (14.0 + 14.0i)7-s + 26.1i·9-s + (29.5 + 29.5i)11-s − 19.0·13-s − 18.1i·15-s + (44.8 − 53.8i)17-s + 149. i·19-s + 18.4·21-s + (−80.3 − 80.3i)23-s − 257. i·25-s + (34.9 + 34.9i)27-s + (104. − 104. i)29-s + (73.6 − 73.6i)31-s + ⋯ |
L(s) = 1 | + (0.126 − 0.126i)3-s + (1.23 − 1.23i)5-s + (0.756 + 0.756i)7-s + 0.968i·9-s + (0.808 + 0.808i)11-s − 0.406·13-s − 0.312i·15-s + (0.640 − 0.768i)17-s + 1.80i·19-s + 0.191·21-s + (−0.728 − 0.728i)23-s − 2.06i·25-s + (0.248 + 0.248i)27-s + (0.666 − 0.666i)29-s + (0.426 − 0.426i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0318i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.647645575\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.647645575\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (-44.8 + 53.8i)T \) |
good | 3 | \( 1 + (-0.657 + 0.657i)T - 27iT^{2} \) |
| 5 | \( 1 + (-13.8 + 13.8i)T - 125iT^{2} \) |
| 7 | \( 1 + (-14.0 - 14.0i)T + 343iT^{2} \) |
| 11 | \( 1 + (-29.5 - 29.5i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + 19.0T + 2.19e3T^{2} \) |
| 19 | \( 1 - 149. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (80.3 + 80.3i)T + 1.21e4iT^{2} \) |
| 29 | \( 1 + (-104. + 104. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + (-73.6 + 73.6i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (196. - 196. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + (-283. - 283. i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 + 20.5iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 81.5T + 1.03e5T^{2} \) |
| 53 | \( 1 + 626. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 301. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + (-352. - 352. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + 924.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-748. + 748. i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + (-4.67 + 4.67i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 + (364. + 364. i)T + 4.93e5iT^{2} \) |
| 83 | \( 1 + 772. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 221.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (7.27 - 7.27i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85930711360463764216067533239, −10.14433648477064291932772459617, −9.665786563668854648130252129004, −8.521394242134600809584403431141, −7.87888190689127190631406560990, −6.22688199571967314616030342396, −5.25887172065036425742830833436, −4.54936648082913044662101550406, −2.23948073979511915409729156979, −1.47821202507680714715295706679,
1.23671652017196250041802484227, 2.80282391017537379112513308059, 3.95541285928726700975019740421, 5.58277177154807319796848440772, 6.54900346259609890315635030586, 7.29268206167097205292432117110, 8.801926635821145098300520220341, 9.646084239398719576991312903826, 10.59193171117278571515332174176, 11.18830622914006511473709318425