L(s) = 1 | + (0.657 − 0.657i)3-s + (13.8 − 13.8i)5-s + (14.0 + 14.0i)7-s + 26.1i·9-s + (29.5 + 29.5i)11-s − 19.0·13-s − 18.1i·15-s + (44.8 − 53.8i)17-s + 149. i·19-s + 18.4·21-s + (−80.3 − 80.3i)23-s − 257. i·25-s + (34.9 + 34.9i)27-s + (104. − 104. i)29-s + (73.6 − 73.6i)31-s + ⋯ |
L(s) = 1 | + (0.126 − 0.126i)3-s + (1.23 − 1.23i)5-s + (0.756 + 0.756i)7-s + 0.968i·9-s + (0.808 + 0.808i)11-s − 0.406·13-s − 0.312i·15-s + (0.640 − 0.768i)17-s + 1.80i·19-s + 0.191·21-s + (−0.728 − 0.728i)23-s − 2.06i·25-s + (0.248 + 0.248i)27-s + (0.666 − 0.666i)29-s + (0.426 − 0.426i)31-s + ⋯ |
Λ(s)=(=(272s/2ΓC(s)L(s)(0.999+0.0318i)Λ(4−s)
Λ(s)=(=(272s/2ΓC(s+3/2)L(s)(0.999+0.0318i)Λ(1−s)
Degree: |
2 |
Conductor: |
272
= 24⋅17
|
Sign: |
0.999+0.0318i
|
Analytic conductor: |
16.0485 |
Root analytic conductor: |
4.00606 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ272(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 272, ( :3/2), 0.999+0.0318i)
|
Particular Values
L(2) |
≈ |
2.647645575 |
L(21) |
≈ |
2.647645575 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1+(−44.8+53.8i)T |
good | 3 | 1+(−0.657+0.657i)T−27iT2 |
| 5 | 1+(−13.8+13.8i)T−125iT2 |
| 7 | 1+(−14.0−14.0i)T+343iT2 |
| 11 | 1+(−29.5−29.5i)T+1.33e3iT2 |
| 13 | 1+19.0T+2.19e3T2 |
| 19 | 1−149.iT−6.85e3T2 |
| 23 | 1+(80.3+80.3i)T+1.21e4iT2 |
| 29 | 1+(−104.+104.i)T−2.43e4iT2 |
| 31 | 1+(−73.6+73.6i)T−2.97e4iT2 |
| 37 | 1+(196.−196.i)T−5.06e4iT2 |
| 41 | 1+(−283.−283.i)T+6.89e4iT2 |
| 43 | 1+20.5iT−7.95e4T2 |
| 47 | 1+81.5T+1.03e5T2 |
| 53 | 1+626.iT−1.48e5T2 |
| 59 | 1+301.iT−2.05e5T2 |
| 61 | 1+(−352.−352.i)T+2.26e5iT2 |
| 67 | 1+924.T+3.00e5T2 |
| 71 | 1+(−748.+748.i)T−3.57e5iT2 |
| 73 | 1+(−4.67+4.67i)T−3.89e5iT2 |
| 79 | 1+(364.+364.i)T+4.93e5iT2 |
| 83 | 1+772.iT−5.71e5T2 |
| 89 | 1+221.T+7.04e5T2 |
| 97 | 1+(7.27−7.27i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85930711360463764216067533239, −10.14433648477064291932772459617, −9.665786563668854648130252129004, −8.521394242134600809584403431141, −7.87888190689127190631406560990, −6.22688199571967314616030342396, −5.25887172065036425742830833436, −4.54936648082913044662101550406, −2.23948073979511915409729156979, −1.47821202507680714715295706679,
1.23671652017196250041802484227, 2.80282391017537379112513308059, 3.95541285928726700975019740421, 5.58277177154807319796848440772, 6.54900346259609890315635030586, 7.29268206167097205292432117110, 8.801926635821145098300520220341, 9.646084239398719576991312903826, 10.59193171117278571515332174176, 11.18830622914006511473709318425