L(s) = 1 | + (−0.613 − 1.06i)2-s + 3-s + (0.247 − 0.429i)4-s + (−2.10 + 3.64i)5-s + (−0.613 − 1.06i)6-s + (2.23 + 1.41i)7-s − 3.06·8-s + 9-s + 5.16·10-s + 5.52·11-s + (0.247 − 0.429i)12-s + (3.59 − 0.226i)13-s + (0.139 − 3.24i)14-s + (−2.10 + 3.64i)15-s + (1.38 + 2.39i)16-s + (−0.0891 + 0.154i)17-s + ⋯ |
L(s) = 1 | + (−0.433 − 0.751i)2-s + 0.577·3-s + (0.123 − 0.214i)4-s + (−0.942 + 1.63i)5-s + (−0.250 − 0.433i)6-s + (0.843 + 0.536i)7-s − 1.08·8-s + 0.333·9-s + 1.63·10-s + 1.66·11-s + (0.0715 − 0.123i)12-s + (0.998 − 0.0627i)13-s + (0.0372 − 0.866i)14-s + (−0.543 + 0.942i)15-s + (0.345 + 0.598i)16-s + (−0.0216 + 0.0374i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.183i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 + 0.183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25143 - 0.116095i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25143 - 0.116095i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + (-2.23 - 1.41i)T \) |
| 13 | \( 1 + (-3.59 + 0.226i)T \) |
good | 2 | \( 1 + (0.613 + 1.06i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (2.10 - 3.64i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 5.52T + 11T^{2} \) |
| 17 | \( 1 + (0.0891 - 0.154i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 4.51T + 19T^{2} \) |
| 23 | \( 1 + (0.543 + 0.941i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0731 - 0.126i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.19 - 7.26i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.15 + 3.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.782 + 1.35i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.66 + 2.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.636 + 1.10i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.93 + 6.82i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.01 + 1.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 3.76T + 61T^{2} \) |
| 67 | \( 1 + 0.307T + 67T^{2} \) |
| 71 | \( 1 + (1.62 + 2.82i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3.53 + 6.11i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.30 - 3.99i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 8.85T + 83T^{2} \) |
| 89 | \( 1 + (6.59 + 11.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.17 - 2.03i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59342770516434941923286366316, −10.97282099454650590207986818185, −10.27957640187194709467388994767, −8.957970132498888324321070642767, −8.307175235249411823043356075961, −6.91629697796176645813457376763, −6.21128983638838104305515465233, −4.05688292190028729707579040339, −3.09751984824603103040968409916, −1.79727083683669845454963174553,
1.27975158432179767045686574033, 3.82229366897289201960633030166, 4.44844956686828404759991312706, 6.15546047892485104048789334065, 7.36816411265250573399691343374, 8.302988401372126269590144192200, 8.607528146684777434517997648922, 9.461974453527608186168153958975, 11.31129554090089753534151449298, 11.87624740566773253148987089273