L(s) = 1 | + (−0.613 − 1.06i)2-s + 3-s + (0.247 − 0.429i)4-s + (−2.10 + 3.64i)5-s + (−0.613 − 1.06i)6-s + (2.23 + 1.41i)7-s − 3.06·8-s + 9-s + 5.16·10-s + 5.52·11-s + (0.247 − 0.429i)12-s + (3.59 − 0.226i)13-s + (0.139 − 3.24i)14-s + (−2.10 + 3.64i)15-s + (1.38 + 2.39i)16-s + (−0.0891 + 0.154i)17-s + ⋯ |
L(s) = 1 | + (−0.433 − 0.751i)2-s + 0.577·3-s + (0.123 − 0.214i)4-s + (−0.942 + 1.63i)5-s + (−0.250 − 0.433i)6-s + (0.843 + 0.536i)7-s − 1.08·8-s + 0.333·9-s + 1.63·10-s + 1.66·11-s + (0.0715 − 0.123i)12-s + (0.998 − 0.0627i)13-s + (0.0372 − 0.866i)14-s + (−0.543 + 0.942i)15-s + (0.345 + 0.598i)16-s + (−0.0216 + 0.0374i)17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.982+0.183i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.982+0.183i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.982+0.183i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.982+0.183i)
|
Particular Values
L(1) |
≈ |
1.25143−0.116095i |
L(21) |
≈ |
1.25143−0.116095i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1+(−2.23−1.41i)T |
| 13 | 1+(−3.59+0.226i)T |
good | 2 | 1+(0.613+1.06i)T+(−1+1.73i)T2 |
| 5 | 1+(2.10−3.64i)T+(−2.5−4.33i)T2 |
| 11 | 1−5.52T+11T2 |
| 17 | 1+(0.0891−0.154i)T+(−8.5−14.7i)T2 |
| 19 | 1+4.51T+19T2 |
| 23 | 1+(0.543+0.941i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.0731−0.126i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−4.19−7.26i)T+(−15.5+26.8i)T2 |
| 37 | 1+(2.15+3.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.782+1.35i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.66+2.88i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.636+1.10i)T+(−23.5−40.7i)T2 |
| 53 | 1+(3.93+6.82i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.01+1.75i)T+(−29.5−51.0i)T2 |
| 61 | 1+3.76T+61T2 |
| 67 | 1+0.307T+67T2 |
| 71 | 1+(1.62+2.82i)T+(−35.5+61.4i)T2 |
| 73 | 1+(3.53+6.11i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2.30−3.99i)T+(−39.5−68.4i)T2 |
| 83 | 1+8.85T+83T2 |
| 89 | 1+(6.59+11.4i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1.17−2.03i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59342770516434941923286366316, −10.97282099454650590207986818185, −10.27957640187194709467388994767, −8.957970132498888324321070642767, −8.307175235249411823043356075961, −6.91629697796176645813457376763, −6.21128983638838104305515465233, −4.05688292190028729707579040339, −3.09751984824603103040968409916, −1.79727083683669845454963174553,
1.27975158432179767045686574033, 3.82229366897289201960633030166, 4.44844956686828404759991312706, 6.15546047892485104048789334065, 7.36816411265250573399691343374, 8.302988401372126269590144192200, 8.607528146684777434517997648922, 9.461974453527608186168153958975, 11.31129554090089753534151449298, 11.87624740566773253148987089273