L(s) = 1 | + (−0.613 + 1.06i)2-s + 3-s + (0.247 + 0.429i)4-s + (−2.10 − 3.64i)5-s + (−0.613 + 1.06i)6-s + (2.23 − 1.41i)7-s − 3.06·8-s + 9-s + 5.16·10-s + 5.52·11-s + (0.247 + 0.429i)12-s + (3.59 + 0.226i)13-s + (0.139 + 3.24i)14-s + (−2.10 − 3.64i)15-s + (1.38 − 2.39i)16-s + (−0.0891 − 0.154i)17-s + ⋯ |
L(s) = 1 | + (−0.433 + 0.751i)2-s + 0.577·3-s + (0.123 + 0.214i)4-s + (−0.942 − 1.63i)5-s + (−0.250 + 0.433i)6-s + (0.843 − 0.536i)7-s − 1.08·8-s + 0.333·9-s + 1.63·10-s + 1.66·11-s + (0.0715 + 0.123i)12-s + (0.998 + 0.0627i)13-s + (0.0372 + 0.866i)14-s + (−0.543 − 0.942i)15-s + (0.345 − 0.598i)16-s + (−0.0216 − 0.0374i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.183i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 - 0.183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25143 + 0.116095i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25143 + 0.116095i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + (-2.23 + 1.41i)T \) |
| 13 | \( 1 + (-3.59 - 0.226i)T \) |
good | 2 | \( 1 + (0.613 - 1.06i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (2.10 + 3.64i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 - 5.52T + 11T^{2} \) |
| 17 | \( 1 + (0.0891 + 0.154i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 4.51T + 19T^{2} \) |
| 23 | \( 1 + (0.543 - 0.941i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0731 + 0.126i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.19 + 7.26i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.15 - 3.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.782 - 1.35i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.66 - 2.88i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.636 - 1.10i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.93 - 6.82i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.01 - 1.75i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 3.76T + 61T^{2} \) |
| 67 | \( 1 + 0.307T + 67T^{2} \) |
| 71 | \( 1 + (1.62 - 2.82i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.53 - 6.11i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.30 + 3.99i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8.85T + 83T^{2} \) |
| 89 | \( 1 + (6.59 - 11.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.17 + 2.03i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87624740566773253148987089273, −11.31129554090089753534151449298, −9.461974453527608186168153958975, −8.607528146684777434517997648922, −8.302988401372126269590144192200, −7.36816411265250573399691343374, −6.15546047892485104048789334065, −4.44844956686828404759991312706, −3.82229366897289201960633030166, −1.27975158432179767045686574033,
1.79727083683669845454963174553, 3.09751984824603103040968409916, 4.05688292190028729707579040339, 6.21128983638838104305515465233, 6.91629697796176645813457376763, 8.307175235249411823043356075961, 8.957970132498888324321070642767, 10.27957640187194709467388994767, 10.97282099454650590207986818185, 11.59342770516434941923286366316