Properties

Label 273.2.j.c.172.4
Level $273$
Weight $2$
Character 273.172
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(100,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.4
Root \(0.613260 + 1.06220i\) of defining polynomial
Character \(\chi\) \(=\) 273.172
Dual form 273.2.j.c.100.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.613260 + 1.06220i) q^{2} +1.00000 q^{3} +(0.247823 + 0.429243i) q^{4} +(-2.10660 - 3.64874i) q^{5} +(-0.613260 + 1.06220i) q^{6} +(2.23241 - 1.41998i) q^{7} -3.06096 q^{8} +1.00000 q^{9} +5.16759 q^{10} +5.52538 q^{11} +(0.247823 + 0.429243i) q^{12} +(3.59845 + 0.226101i) q^{13} +(0.139251 + 3.24208i) q^{14} +(-2.10660 - 3.64874i) q^{15} +(1.38152 - 2.39286i) q^{16} +(-0.0891447 - 0.154403i) q^{17} +(-0.613260 + 1.06220i) q^{18} -4.51901 q^{19} +(1.04413 - 1.80849i) q^{20} +(2.23241 - 1.41998i) q^{21} +(-3.38850 + 5.86905i) q^{22} +(-0.543523 + 0.941410i) q^{23} -3.06096 q^{24} +(-6.37556 + 11.0428i) q^{25} +(-2.44695 + 3.68361i) q^{26} +1.00000 q^{27} +(1.16276 + 0.606342i) q^{28} +(-0.0731926 - 0.126773i) q^{29} +5.16759 q^{30} +(4.19459 - 7.26525i) q^{31} +(-1.36650 - 2.36685i) q^{32} +5.52538 q^{33} +0.218676 q^{34} +(-9.88395 - 5.15416i) q^{35} +(0.247823 + 0.429243i) q^{36} +(-2.15922 + 3.73988i) q^{37} +(2.77133 - 4.80008i) q^{38} +(3.59845 + 0.226101i) q^{39} +(6.44824 + 11.1687i) q^{40} +(0.782385 + 1.35513i) q^{41} +(0.139251 + 3.24208i) q^{42} +(-1.66752 + 2.88823i) q^{43} +(1.36932 + 2.37173i) q^{44} +(-2.10660 - 3.64874i) q^{45} +(-0.666643 - 1.15466i) q^{46} +(0.636455 + 1.10237i) q^{47} +(1.38152 - 2.39286i) q^{48} +(2.96732 - 6.33996i) q^{49} +(-7.81976 - 13.5442i) q^{50} +(-0.0891447 - 0.154403i) q^{51} +(0.794729 + 1.60064i) q^{52} +(-3.93930 + 6.82307i) q^{53} +(-0.613260 + 1.06220i) q^{54} +(-11.6398 - 20.1607i) q^{55} +(-6.83333 + 4.34650i) q^{56} -4.51901 q^{57} +0.179545 q^{58} +(1.01059 + 1.75040i) q^{59} +(1.04413 - 1.80849i) q^{60} -3.76557 q^{61} +(5.14476 + 8.91098i) q^{62} +(2.23241 - 1.41998i) q^{63} +8.87816 q^{64} +(-6.75553 - 13.6061i) q^{65} +(-3.38850 + 5.86905i) q^{66} -0.307378 q^{67} +(0.0441842 - 0.0765294i) q^{68} +(-0.543523 + 0.941410i) q^{69} +(11.5362 - 7.33787i) q^{70} +(-1.62940 + 2.82220i) q^{71} -3.06096 q^{72} +(-3.53172 + 6.11712i) q^{73} +(-2.64833 - 4.58704i) q^{74} +(-6.37556 + 11.0428i) q^{75} +(-1.11992 - 1.93975i) q^{76} +(12.3349 - 7.84593i) q^{77} +(-2.44695 + 3.68361i) q^{78} +(-2.30707 - 3.99596i) q^{79} -11.6413 q^{80} +1.00000 q^{81} -1.91922 q^{82} -8.85136 q^{83} +(1.16276 + 0.606342i) q^{84} +(-0.375585 + 0.650532i) q^{85} +(-2.04525 - 3.54248i) q^{86} +(-0.0731926 - 0.126773i) q^{87} -16.9130 q^{88} +(-6.59852 + 11.4290i) q^{89} +5.16759 q^{90} +(8.35429 - 4.60498i) q^{91} -0.538791 q^{92} +(4.19459 - 7.26525i) q^{93} -1.56125 q^{94} +(9.51976 + 16.4887i) q^{95} +(-1.36650 - 2.36685i) q^{96} +(1.17499 - 2.03514i) q^{97} +(4.91455 + 7.03992i) q^{98} +5.52538 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 16 q^{4} - 9 q^{7} - 12 q^{8} + 20 q^{9} + 8 q^{10} + 16 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} - 20 q^{16} - 14 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} - 14 q^{23} - 12 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.613260 + 1.06220i −0.433641 + 0.751088i −0.997184 0.0749992i \(-0.976105\pi\)
0.563543 + 0.826087i \(0.309438\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.247823 + 0.429243i 0.123912 + 0.214621i
\(5\) −2.10660 3.64874i −0.942102 1.63177i −0.761452 0.648221i \(-0.775513\pi\)
−0.180649 0.983548i \(-0.557820\pi\)
\(6\) −0.613260 + 1.06220i −0.250363 + 0.433641i
\(7\) 2.23241 1.41998i 0.843772 0.536702i
\(8\) −3.06096 −1.08221
\(9\) 1.00000 0.333333
\(10\) 5.16759 1.63413
\(11\) 5.52538 1.66596 0.832982 0.553300i \(-0.186632\pi\)
0.832982 + 0.553300i \(0.186632\pi\)
\(12\) 0.247823 + 0.429243i 0.0715404 + 0.123912i
\(13\) 3.59845 + 0.226101i 0.998032 + 0.0627091i
\(14\) 0.139251 + 3.24208i 0.0372163 + 0.866482i
\(15\) −2.10660 3.64874i −0.543923 0.942102i
\(16\) 1.38152 2.39286i 0.345380 0.598216i
\(17\) −0.0891447 0.154403i −0.0216208 0.0374482i 0.855013 0.518607i \(-0.173549\pi\)
−0.876633 + 0.481159i \(0.840216\pi\)
\(18\) −0.613260 + 1.06220i −0.144547 + 0.250363i
\(19\) −4.51901 −1.03673 −0.518366 0.855159i \(-0.673459\pi\)
−0.518366 + 0.855159i \(0.673459\pi\)
\(20\) 1.04413 1.80849i 0.233475 0.404390i
\(21\) 2.23241 1.41998i 0.487152 0.309865i
\(22\) −3.38850 + 5.86905i −0.722430 + 1.25129i
\(23\) −0.543523 + 0.941410i −0.113332 + 0.196298i −0.917112 0.398630i \(-0.869486\pi\)
0.803779 + 0.594927i \(0.202819\pi\)
\(24\) −3.06096 −0.624816
\(25\) −6.37556 + 11.0428i −1.27511 + 2.20856i
\(26\) −2.44695 + 3.68361i −0.479887 + 0.722416i
\(27\) 1.00000 0.192450
\(28\) 1.16276 + 0.606342i 0.219741 + 0.114588i
\(29\) −0.0731926 0.126773i −0.0135915 0.0235412i 0.859150 0.511724i \(-0.170993\pi\)
−0.872741 + 0.488183i \(0.837660\pi\)
\(30\) 5.16759 0.943468
\(31\) 4.19459 7.26525i 0.753371 1.30488i −0.192809 0.981236i \(-0.561760\pi\)
0.946180 0.323641i \(-0.104907\pi\)
\(32\) −1.36650 2.36685i −0.241565 0.418403i
\(33\) 5.52538 0.961845
\(34\) 0.218676 0.0375026
\(35\) −9.88395 5.15416i −1.67069 0.871213i
\(36\) 0.247823 + 0.429243i 0.0413039 + 0.0715404i
\(37\) −2.15922 + 3.73988i −0.354973 + 0.614832i −0.987113 0.160022i \(-0.948843\pi\)
0.632140 + 0.774854i \(0.282177\pi\)
\(38\) 2.77133 4.80008i 0.449569 0.778676i
\(39\) 3.59845 + 0.226101i 0.576214 + 0.0362051i
\(40\) 6.44824 + 11.1687i 1.01956 + 1.76592i
\(41\) 0.782385 + 1.35513i 0.122188 + 0.211636i 0.920630 0.390436i \(-0.127676\pi\)
−0.798442 + 0.602071i \(0.794342\pi\)
\(42\) 0.139251 + 3.24208i 0.0214869 + 0.500264i
\(43\) −1.66752 + 2.88823i −0.254295 + 0.440452i −0.964704 0.263338i \(-0.915177\pi\)
0.710409 + 0.703789i \(0.248510\pi\)
\(44\) 1.36932 + 2.37173i 0.206432 + 0.357551i
\(45\) −2.10660 3.64874i −0.314034 0.543923i
\(46\) −0.666643 1.15466i −0.0982911 0.170245i
\(47\) 0.636455 + 1.10237i 0.0928365 + 0.160798i 0.908704 0.417442i \(-0.137073\pi\)
−0.815867 + 0.578239i \(0.803740\pi\)
\(48\) 1.38152 2.39286i 0.199405 0.345380i
\(49\) 2.96732 6.33996i 0.423902 0.905708i
\(50\) −7.81976 13.5442i −1.10588 1.91544i
\(51\) −0.0891447 0.154403i −0.0124827 0.0216208i
\(52\) 0.794729 + 1.60064i 0.110209 + 0.221969i
\(53\) −3.93930 + 6.82307i −0.541105 + 0.937221i 0.457736 + 0.889088i \(0.348660\pi\)
−0.998841 + 0.0481326i \(0.984673\pi\)
\(54\) −0.613260 + 1.06220i −0.0834542 + 0.144547i
\(55\) −11.6398 20.1607i −1.56951 2.71847i
\(56\) −6.83333 + 4.34650i −0.913142 + 0.580826i
\(57\) −4.51901 −0.598557
\(58\) 0.179545 0.0235753
\(59\) 1.01059 + 1.75040i 0.131568 + 0.227883i 0.924281 0.381712i \(-0.124665\pi\)
−0.792713 + 0.609595i \(0.791332\pi\)
\(60\) 1.04413 1.80849i 0.134797 0.233475i
\(61\) −3.76557 −0.482132 −0.241066 0.970509i \(-0.577497\pi\)
−0.241066 + 0.970509i \(0.577497\pi\)
\(62\) 5.14476 + 8.91098i 0.653385 + 1.13170i
\(63\) 2.23241 1.41998i 0.281257 0.178901i
\(64\) 8.87816 1.10977
\(65\) −6.75553 13.6061i −0.837921 1.68764i
\(66\) −3.38850 + 5.86905i −0.417095 + 0.722430i
\(67\) −0.307378 −0.0375522 −0.0187761 0.999824i \(-0.505977\pi\)
−0.0187761 + 0.999824i \(0.505977\pi\)
\(68\) 0.0441842 0.0765294i 0.00535813 0.00928055i
\(69\) −0.543523 + 0.941410i −0.0654325 + 0.113332i
\(70\) 11.5362 7.33787i 1.37884 0.877043i
\(71\) −1.62940 + 2.82220i −0.193374 + 0.334933i −0.946366 0.323096i \(-0.895276\pi\)
0.752992 + 0.658029i \(0.228610\pi\)
\(72\) −3.06096 −0.360738
\(73\) −3.53172 + 6.11712i −0.413356 + 0.715954i −0.995254 0.0973075i \(-0.968977\pi\)
0.581898 + 0.813262i \(0.302310\pi\)
\(74\) −2.64833 4.58704i −0.307862 0.533232i
\(75\) −6.37556 + 11.0428i −0.736186 + 1.27511i
\(76\) −1.11992 1.93975i −0.128463 0.222505i
\(77\) 12.3349 7.84593i 1.40569 0.894126i
\(78\) −2.44695 + 3.68361i −0.277063 + 0.417087i
\(79\) −2.30707 3.99596i −0.259566 0.449581i 0.706560 0.707653i \(-0.250246\pi\)
−0.966126 + 0.258072i \(0.916913\pi\)
\(80\) −11.6413 −1.30153
\(81\) 1.00000 0.111111
\(82\) −1.91922 −0.211943
\(83\) −8.85136 −0.971563 −0.485782 0.874080i \(-0.661465\pi\)
−0.485782 + 0.874080i \(0.661465\pi\)
\(84\) 1.16276 + 0.606342i 0.126867 + 0.0661573i
\(85\) −0.375585 + 0.650532i −0.0407379 + 0.0705601i
\(86\) −2.04525 3.54248i −0.220545 0.381995i
\(87\) −0.0731926 0.126773i −0.00784707 0.0135915i
\(88\) −16.9130 −1.80293
\(89\) −6.59852 + 11.4290i −0.699442 + 1.21147i 0.269219 + 0.963079i \(0.413235\pi\)
−0.968660 + 0.248389i \(0.920099\pi\)
\(90\) 5.16759 0.544712
\(91\) 8.35429 4.60498i 0.875767 0.482733i
\(92\) −0.538791 −0.0561729
\(93\) 4.19459 7.26525i 0.434959 0.753371i
\(94\) −1.56125 −0.161031
\(95\) 9.51976 + 16.4887i 0.976707 + 1.69171i
\(96\) −1.36650 2.36685i −0.139468 0.241565i
\(97\) 1.17499 2.03514i 0.119302 0.206637i −0.800189 0.599748i \(-0.795268\pi\)
0.919491 + 0.393110i \(0.128601\pi\)
\(98\) 4.91455 + 7.03992i 0.496445 + 0.711139i
\(99\) 5.52538 0.555322
\(100\) −6.32005 −0.632005
\(101\) 10.1397 1.00894 0.504469 0.863430i \(-0.331688\pi\)
0.504469 + 0.863430i \(0.331688\pi\)
\(102\) 0.218676 0.0216521
\(103\) −5.01549 8.68709i −0.494191 0.855964i 0.505786 0.862659i \(-0.331202\pi\)
−0.999978 + 0.00669444i \(0.997869\pi\)
\(104\) −11.0147 0.692086i −1.08008 0.0678647i
\(105\) −9.88395 5.15416i −0.964575 0.502995i
\(106\) −4.83163 8.36864i −0.469290 0.812834i
\(107\) −6.92606 + 11.9963i −0.669567 + 1.15972i 0.308458 + 0.951238i \(0.400187\pi\)
−0.978025 + 0.208486i \(0.933146\pi\)
\(108\) 0.247823 + 0.429243i 0.0238468 + 0.0413039i
\(109\) 0.471229 0.816192i 0.0451355 0.0781770i −0.842575 0.538579i \(-0.818961\pi\)
0.887711 + 0.460402i \(0.152295\pi\)
\(110\) 28.5529 2.72241
\(111\) −2.15922 + 3.73988i −0.204944 + 0.354973i
\(112\) −0.313697 7.30359i −0.0296415 0.690124i
\(113\) 2.86292 4.95873i 0.269321 0.466478i −0.699366 0.714764i \(-0.746534\pi\)
0.968687 + 0.248286i \(0.0798674\pi\)
\(114\) 2.77133 4.80008i 0.259559 0.449569i
\(115\) 4.57995 0.427083
\(116\) 0.0362777 0.0628348i 0.00336830 0.00583406i
\(117\) 3.59845 + 0.226101i 0.332677 + 0.0209030i
\(118\) −2.47903 −0.228213
\(119\) −0.418257 0.218107i −0.0383415 0.0199939i
\(120\) 6.44824 + 11.1687i 0.588641 + 1.01956i
\(121\) 19.5298 1.77544
\(122\) 2.30928 3.99979i 0.209072 0.362124i
\(123\) 0.782385 + 1.35513i 0.0705453 + 0.122188i
\(124\) 4.15807 0.373406
\(125\) 32.6571 2.92094
\(126\) 0.139251 + 3.24208i 0.0124054 + 0.288827i
\(127\) 6.56642 + 11.3734i 0.582676 + 1.00922i 0.995161 + 0.0982595i \(0.0313275\pi\)
−0.412485 + 0.910964i \(0.635339\pi\)
\(128\) −2.71163 + 4.69668i −0.239676 + 0.415131i
\(129\) −1.66752 + 2.88823i −0.146817 + 0.254295i
\(130\) 18.5953 + 1.16840i 1.63092 + 0.102475i
\(131\) 5.95196 + 10.3091i 0.520025 + 0.900710i 0.999729 + 0.0232796i \(0.00741081\pi\)
−0.479704 + 0.877431i \(0.659256\pi\)
\(132\) 1.36932 + 2.37173i 0.119184 + 0.206432i
\(133\) −10.0883 + 6.41690i −0.874765 + 0.556416i
\(134\) 0.188503 0.326496i 0.0162842 0.0282050i
\(135\) −2.10660 3.64874i −0.181308 0.314034i
\(136\) 0.272868 + 0.472622i 0.0233983 + 0.0405270i
\(137\) −6.76423 11.7160i −0.577907 1.00096i −0.995719 0.0924312i \(-0.970536\pi\)
0.417812 0.908534i \(-0.362797\pi\)
\(138\) −0.666643 1.15466i −0.0567484 0.0982911i
\(139\) −10.9150 + 18.9053i −0.925796 + 1.60353i −0.135521 + 0.990774i \(0.543271\pi\)
−0.790275 + 0.612752i \(0.790062\pi\)
\(140\) −0.237087 5.51993i −0.0200375 0.466519i
\(141\) 0.636455 + 1.10237i 0.0535992 + 0.0928365i
\(142\) −1.99849 3.46149i −0.167710 0.290481i
\(143\) 19.8828 + 1.24929i 1.66269 + 0.104471i
\(144\) 1.38152 2.39286i 0.115127 0.199405i
\(145\) −0.308376 + 0.534122i −0.0256092 + 0.0443564i
\(146\) −4.33173 7.50277i −0.358496 0.620934i
\(147\) 2.96732 6.33996i 0.244740 0.522911i
\(148\) −2.14042 −0.175941
\(149\) 7.66408 0.627866 0.313933 0.949445i \(-0.398353\pi\)
0.313933 + 0.949445i \(0.398353\pi\)
\(150\) −7.81976 13.5442i −0.638480 1.10588i
\(151\) −1.87363 + 3.24522i −0.152474 + 0.264092i −0.932136 0.362108i \(-0.882057\pi\)
0.779663 + 0.626200i \(0.215391\pi\)
\(152\) 13.8325 1.12197
\(153\) −0.0891447 0.154403i −0.00720692 0.0124827i
\(154\) 0.769413 + 17.9137i 0.0620011 + 1.44353i
\(155\) −35.3454 −2.83901
\(156\) 0.794729 + 1.60064i 0.0636292 + 0.128154i
\(157\) 1.63089 2.82478i 0.130159 0.225442i −0.793579 0.608467i \(-0.791785\pi\)
0.923738 + 0.383026i \(0.125118\pi\)
\(158\) 5.65934 0.450233
\(159\) −3.93930 + 6.82307i −0.312407 + 0.541105i
\(160\) −5.75734 + 9.97201i −0.455158 + 0.788357i
\(161\) 0.123416 + 2.87341i 0.00972653 + 0.226456i
\(162\) −0.613260 + 1.06220i −0.0481823 + 0.0834542i
\(163\) −10.4509 −0.818576 −0.409288 0.912405i \(-0.634223\pi\)
−0.409288 + 0.912405i \(0.634223\pi\)
\(164\) −0.387787 + 0.671666i −0.0302810 + 0.0524483i
\(165\) −11.6398 20.1607i −0.906156 1.56951i
\(166\) 5.42819 9.40190i 0.421309 0.729729i
\(167\) 5.58474 + 9.67305i 0.432160 + 0.748523i 0.997059 0.0766369i \(-0.0244182\pi\)
−0.564899 + 0.825160i \(0.691085\pi\)
\(168\) −6.83333 + 4.34650i −0.527203 + 0.335340i
\(169\) 12.8978 + 1.62723i 0.992135 + 0.125171i
\(170\) −0.460663 0.797891i −0.0353312 0.0611955i
\(171\) −4.51901 −0.345577
\(172\) −1.65300 −0.126040
\(173\) −12.7666 −0.970630 −0.485315 0.874339i \(-0.661295\pi\)
−0.485315 + 0.874339i \(0.661295\pi\)
\(174\) 0.179545 0.0136112
\(175\) 1.44767 + 33.7052i 0.109434 + 2.54787i
\(176\) 7.63343 13.2215i 0.575391 0.996607i
\(177\) 1.01059 + 1.75040i 0.0759610 + 0.131568i
\(178\) −8.09322 14.0179i −0.606613 1.05068i
\(179\) −12.5526 −0.938228 −0.469114 0.883138i \(-0.655427\pi\)
−0.469114 + 0.883138i \(0.655427\pi\)
\(180\) 1.04413 1.80849i 0.0778249 0.134797i
\(181\) 13.6821 1.01698 0.508491 0.861067i \(-0.330204\pi\)
0.508491 + 0.861067i \(0.330204\pi\)
\(182\) −0.231950 + 11.6980i −0.0171933 + 0.867111i
\(183\) −3.76557 −0.278359
\(184\) 1.66371 2.88162i 0.122650 0.212436i
\(185\) 18.1945 1.33768
\(186\) 5.14476 + 8.91098i 0.377232 + 0.653385i
\(187\) −0.492558 0.853136i −0.0360194 0.0623875i
\(188\) −0.315457 + 0.546387i −0.0230070 + 0.0398494i
\(189\) 2.23241 1.41998i 0.162384 0.103288i
\(190\) −23.3524 −1.69416
\(191\) 24.4136 1.76650 0.883252 0.468899i \(-0.155349\pi\)
0.883252 + 0.468899i \(0.155349\pi\)
\(192\) 8.87816 0.640726
\(193\) −12.5094 −0.900445 −0.450223 0.892916i \(-0.648655\pi\)
−0.450223 + 0.892916i \(0.648655\pi\)
\(194\) 1.44115 + 2.49614i 0.103468 + 0.179213i
\(195\) −6.75553 13.6061i −0.483774 0.974357i
\(196\) 3.45675 0.297491i 0.246911 0.0212493i
\(197\) −9.75853 16.9023i −0.695266 1.20424i −0.970091 0.242742i \(-0.921953\pi\)
0.274825 0.961494i \(-0.411380\pi\)
\(198\) −3.38850 + 5.86905i −0.240810 + 0.417095i
\(199\) 2.39385 + 4.14627i 0.169695 + 0.293921i 0.938313 0.345788i \(-0.112388\pi\)
−0.768617 + 0.639709i \(0.779055\pi\)
\(200\) 19.5153 33.8016i 1.37994 2.39013i
\(201\) −0.307378 −0.0216808
\(202\) −6.21828 + 10.7704i −0.437517 + 0.757801i
\(203\) −0.343411 0.179078i −0.0241028 0.0125688i
\(204\) 0.0441842 0.0765294i 0.00309352 0.00535813i
\(205\) 3.29635 5.70945i 0.230227 0.398765i
\(206\) 12.3032 0.857206
\(207\) −0.543523 + 0.941410i −0.0377775 + 0.0654325i
\(208\) 5.51237 8.29825i 0.382214 0.575380i
\(209\) −24.9692 −1.72716
\(210\) 11.5362 7.33787i 0.796072 0.506361i
\(211\) −2.28135 3.95141i −0.157054 0.272026i 0.776751 0.629808i \(-0.216866\pi\)
−0.933805 + 0.357782i \(0.883533\pi\)
\(212\) −3.90500 −0.268197
\(213\) −1.62940 + 2.82220i −0.111644 + 0.193374i
\(214\) −8.49495 14.7137i −0.580703 1.00581i
\(215\) 14.0512 0.958287
\(216\) −3.06096 −0.208272
\(217\) −0.952450 22.1753i −0.0646565 1.50535i
\(218\) 0.577972 + 1.00108i 0.0391452 + 0.0678015i
\(219\) −3.53172 + 6.11712i −0.238651 + 0.413356i
\(220\) 5.76922 9.99258i 0.388961 0.673700i
\(221\) −0.285872 0.575768i −0.0192299 0.0387304i
\(222\) −2.64833 4.58704i −0.177744 0.307862i
\(223\) −3.76290 6.51754i −0.251983 0.436447i 0.712089 0.702089i \(-0.247749\pi\)
−0.964072 + 0.265643i \(0.914416\pi\)
\(224\) −6.41146 3.34337i −0.428384 0.223388i
\(225\) −6.37556 + 11.0428i −0.425037 + 0.736186i
\(226\) 3.51143 + 6.08198i 0.233577 + 0.404567i
\(227\) 1.84054 + 3.18791i 0.122161 + 0.211589i 0.920620 0.390460i \(-0.127684\pi\)
−0.798459 + 0.602050i \(0.794351\pi\)
\(228\) −1.11992 1.93975i −0.0741682 0.128463i
\(229\) −2.35083 4.07176i −0.155347 0.269069i 0.777838 0.628465i \(-0.216316\pi\)
−0.933185 + 0.359395i \(0.882983\pi\)
\(230\) −2.80871 + 4.86482i −0.185201 + 0.320777i
\(231\) 12.3349 7.84593i 0.811578 0.516224i
\(232\) 0.224040 + 0.388048i 0.0147089 + 0.0254766i
\(233\) 1.20491 + 2.08697i 0.0789365 + 0.136722i 0.902791 0.430079i \(-0.141514\pi\)
−0.823855 + 0.566801i \(0.808181\pi\)
\(234\) −2.44695 + 3.68361i −0.159962 + 0.240805i
\(235\) 2.68152 4.64452i 0.174923 0.302975i
\(236\) −0.500898 + 0.867581i −0.0326057 + 0.0564747i
\(237\) −2.30707 3.99596i −0.149860 0.259566i
\(238\) 0.488174 0.310515i 0.0316436 0.0201277i
\(239\) 7.96050 0.514922 0.257461 0.966289i \(-0.417114\pi\)
0.257461 + 0.966289i \(0.417114\pi\)
\(240\) −11.6413 −0.751441
\(241\) −14.9378 25.8730i −0.962225 1.66662i −0.716892 0.697185i \(-0.754436\pi\)
−0.245334 0.969439i \(-0.578898\pi\)
\(242\) −11.9769 + 20.7445i −0.769902 + 1.33351i
\(243\) 1.00000 0.0641500
\(244\) −0.933197 1.61634i −0.0597418 0.103476i
\(245\) −29.3838 + 2.52880i −1.87726 + 0.161559i
\(246\) −1.91922 −0.122365
\(247\) −16.2614 1.02175i −1.03469 0.0650125i
\(248\) −12.8395 + 22.2387i −0.815309 + 1.41216i
\(249\) −8.85136 −0.560932
\(250\) −20.0273 + 34.6883i −1.26664 + 2.19388i
\(251\) 11.1062 19.2366i 0.701019 1.21420i −0.267090 0.963672i \(-0.586062\pi\)
0.968109 0.250529i \(-0.0806045\pi\)
\(252\) 1.16276 + 0.606342i 0.0732469 + 0.0381959i
\(253\) −3.00317 + 5.20165i −0.188808 + 0.327025i
\(254\) −16.1077 −1.01069
\(255\) −0.375585 + 0.650532i −0.0235200 + 0.0407379i
\(256\) 5.55229 + 9.61685i 0.347018 + 0.601053i
\(257\) 1.61677 2.80033i 0.100851 0.174680i −0.811184 0.584791i \(-0.801177\pi\)
0.912036 + 0.410111i \(0.134510\pi\)
\(258\) −2.04525 3.54248i −0.127332 0.220545i
\(259\) 0.490285 + 11.4150i 0.0304649 + 0.709293i
\(260\) 4.16616 6.27168i 0.258374 0.388953i
\(261\) −0.0731926 0.126773i −0.00453051 0.00784707i
\(262\) −14.6004 −0.902016
\(263\) 7.48246 0.461388 0.230694 0.973026i \(-0.425900\pi\)
0.230694 + 0.973026i \(0.425900\pi\)
\(264\) −16.9130 −1.04092
\(265\) 33.1942 2.03910
\(266\) −0.629275 14.6510i −0.0385833 0.898310i
\(267\) −6.59852 + 11.4290i −0.403823 + 0.699442i
\(268\) −0.0761754 0.131940i −0.00465316 0.00805950i
\(269\) 1.51589 + 2.62560i 0.0924253 + 0.160085i 0.908531 0.417817i \(-0.137205\pi\)
−0.816106 + 0.577902i \(0.803871\pi\)
\(270\) 5.16759 0.314489
\(271\) 10.8080 18.7200i 0.656540 1.13716i −0.324965 0.945726i \(-0.605352\pi\)
0.981505 0.191435i \(-0.0613142\pi\)
\(272\) −0.492621 −0.0298695
\(273\) 8.35429 4.60498i 0.505625 0.278706i
\(274\) 16.5929 1.00242
\(275\) −35.2274 + 61.0156i −2.12429 + 3.67938i
\(276\) −0.538791 −0.0324314
\(277\) 4.75341 + 8.23314i 0.285604 + 0.494681i 0.972756 0.231833i \(-0.0744723\pi\)
−0.687151 + 0.726514i \(0.741139\pi\)
\(278\) −13.3874 23.1877i −0.802926 1.39071i
\(279\) 4.19459 7.26525i 0.251124 0.434959i
\(280\) 30.2544 + 15.7767i 1.80805 + 0.942838i
\(281\) 31.6740 1.88951 0.944757 0.327771i \(-0.106297\pi\)
0.944757 + 0.327771i \(0.106297\pi\)
\(282\) −1.56125 −0.0929711
\(283\) −14.5144 −0.862792 −0.431396 0.902163i \(-0.641979\pi\)
−0.431396 + 0.902163i \(0.641979\pi\)
\(284\) −1.61521 −0.0958451
\(285\) 9.51976 + 16.4887i 0.563902 + 0.976707i
\(286\) −13.5203 + 20.3534i −0.799475 + 1.20352i
\(287\) 3.67086 + 1.91424i 0.216684 + 0.112994i
\(288\) −1.36650 2.36685i −0.0805217 0.139468i
\(289\) 8.48411 14.6949i 0.499065 0.864406i
\(290\) −0.378229 0.655112i −0.0222104 0.0384695i
\(291\) 1.17499 2.03514i 0.0688791 0.119302i
\(292\) −3.50097 −0.204879
\(293\) −10.3725 + 17.9658i −0.605970 + 1.04957i 0.385927 + 0.922529i \(0.373882\pi\)
−0.991897 + 0.127042i \(0.959452\pi\)
\(294\) 4.91455 + 7.03992i 0.286623 + 0.410577i
\(295\) 4.25785 7.37481i 0.247901 0.429378i
\(296\) 6.60929 11.4476i 0.384157 0.665379i
\(297\) 5.52538 0.320615
\(298\) −4.70008 + 8.14078i −0.272268 + 0.471583i
\(299\) −2.16870 + 3.26473i −0.125419 + 0.188804i
\(300\) −6.32005 −0.364888
\(301\) 0.378638 + 8.81557i 0.0218243 + 0.508121i
\(302\) −2.29804 3.98033i −0.132237 0.229042i
\(303\) 10.1397 0.582511
\(304\) −6.24310 + 10.8134i −0.358067 + 0.620189i
\(305\) 7.93257 + 13.7396i 0.454218 + 0.786728i
\(306\) 0.218676 0.0125009
\(307\) 13.9276 0.794892 0.397446 0.917625i \(-0.369897\pi\)
0.397446 + 0.917625i \(0.369897\pi\)
\(308\) 6.42468 + 3.35027i 0.366080 + 0.190899i
\(309\) −5.01549 8.68709i −0.285321 0.494191i
\(310\) 21.6759 37.5438i 1.23111 2.13234i
\(311\) −2.28996 + 3.96633i −0.129852 + 0.224910i −0.923619 0.383312i \(-0.874784\pi\)
0.793767 + 0.608222i \(0.208117\pi\)
\(312\) −11.0147 0.692086i −0.623587 0.0391817i
\(313\) 6.75197 + 11.6948i 0.381644 + 0.661026i 0.991297 0.131642i \(-0.0420248\pi\)
−0.609654 + 0.792668i \(0.708691\pi\)
\(314\) 2.00032 + 3.46465i 0.112884 + 0.195521i
\(315\) −9.88395 5.15416i −0.556897 0.290404i
\(316\) 1.14349 1.98059i 0.0643264 0.111417i
\(317\) 2.86564 + 4.96343i 0.160950 + 0.278774i 0.935210 0.354094i \(-0.115211\pi\)
−0.774259 + 0.632868i \(0.781877\pi\)
\(318\) −4.83163 8.36864i −0.270945 0.469290i
\(319\) −0.404417 0.700471i −0.0226430 0.0392188i
\(320\) −18.7028 32.3941i −1.04552 1.81089i
\(321\) −6.92606 + 11.9963i −0.386575 + 0.669567i
\(322\) −3.12781 1.63105i −0.174306 0.0908951i
\(323\) 0.402845 + 0.697749i 0.0224149 + 0.0388238i
\(324\) 0.247823 + 0.429243i 0.0137680 + 0.0238468i
\(325\) −25.4390 + 38.2955i −1.41110 + 2.12425i
\(326\) 6.40911 11.1009i 0.354968 0.614822i
\(327\) 0.471229 0.816192i 0.0260590 0.0451355i
\(328\) −2.39485 4.14801i −0.132234 0.229035i
\(329\) 2.98618 + 1.55719i 0.164633 + 0.0858509i
\(330\) 28.5529 1.57178
\(331\) −24.5183 −1.34765 −0.673824 0.738892i \(-0.735349\pi\)
−0.673824 + 0.738892i \(0.735349\pi\)
\(332\) −2.19357 3.79938i −0.120388 0.208518i
\(333\) −2.15922 + 3.73988i −0.118324 + 0.204944i
\(334\) −13.6996 −0.749609
\(335\) 0.647524 + 1.12154i 0.0353780 + 0.0612765i
\(336\) −0.313697 7.30359i −0.0171136 0.398443i
\(337\) 23.7122 1.29168 0.645842 0.763471i \(-0.276506\pi\)
0.645842 + 0.763471i \(0.276506\pi\)
\(338\) −9.63812 + 12.7021i −0.524245 + 0.690901i
\(339\) 2.86292 4.95873i 0.155493 0.269321i
\(340\) −0.372315 −0.0201916
\(341\) 23.1767 40.1433i 1.25509 2.17388i
\(342\) 2.77133 4.80008i 0.149856 0.259559i
\(343\) −2.37834 18.3669i −0.128418 0.991720i
\(344\) 5.10422 8.84078i 0.275201 0.476663i
\(345\) 4.57995 0.246576
\(346\) 7.82928 13.5607i 0.420905 0.729028i
\(347\) 1.09374 + 1.89441i 0.0587150 + 0.101697i 0.893889 0.448289i \(-0.147966\pi\)
−0.835174 + 0.549986i \(0.814633\pi\)
\(348\) 0.0362777 0.0628348i 0.00194469 0.00336830i
\(349\) −14.2613 24.7014i −0.763392 1.32223i −0.941092 0.338149i \(-0.890199\pi\)
0.177700 0.984085i \(-0.443134\pi\)
\(350\) −36.6894 19.1324i −1.96113 1.02267i
\(351\) 3.59845 + 0.226101i 0.192071 + 0.0120684i
\(352\) −7.55042 13.0777i −0.402439 0.697045i
\(353\) 10.2865 0.547494 0.273747 0.961802i \(-0.411737\pi\)
0.273747 + 0.961802i \(0.411737\pi\)
\(354\) −2.47903 −0.131759
\(355\) 13.7300 0.728712
\(356\) −6.54107 −0.346676
\(357\) −0.418257 0.218107i −0.0221365 0.0115435i
\(358\) 7.69804 13.3334i 0.406854 0.704691i
\(359\) 0.247010 + 0.427834i 0.0130367 + 0.0225802i 0.872470 0.488667i \(-0.162517\pi\)
−0.859433 + 0.511248i \(0.829184\pi\)
\(360\) 6.44824 + 11.1687i 0.339852 + 0.588641i
\(361\) 1.42144 0.0748125
\(362\) −8.39068 + 14.5331i −0.441004 + 0.763842i
\(363\) 19.5298 1.02505
\(364\) 4.04704 + 2.44479i 0.212123 + 0.128142i
\(365\) 29.7597 1.55770
\(366\) 2.30928 3.99979i 0.120708 0.209072i
\(367\) −20.9488 −1.09352 −0.546759 0.837290i \(-0.684139\pi\)
−0.546759 + 0.837290i \(0.684139\pi\)
\(368\) 1.50178 + 2.60116i 0.0782856 + 0.135595i
\(369\) 0.782385 + 1.35513i 0.0407294 + 0.0705453i
\(370\) −11.1579 + 19.3261i −0.580074 + 1.00472i
\(371\) 0.894482 + 20.8256i 0.0464392 + 1.08121i
\(372\) 4.15807 0.215586
\(373\) 28.4170 1.47138 0.735689 0.677319i \(-0.236858\pi\)
0.735689 + 0.677319i \(0.236858\pi\)
\(374\) 1.20827 0.0624779
\(375\) 32.6571 1.68640
\(376\) −1.94817 3.37432i −0.100469 0.174017i
\(377\) −0.234717 0.472737i −0.0120885 0.0243472i
\(378\) 0.139251 + 3.24208i 0.00716228 + 0.166755i
\(379\) 17.5547 + 30.4056i 0.901724 + 1.56183i 0.825255 + 0.564760i \(0.191031\pi\)
0.0764691 + 0.997072i \(0.475635\pi\)
\(380\) −4.71844 + 8.17257i −0.242051 + 0.419244i
\(381\) 6.56642 + 11.3734i 0.336408 + 0.582676i
\(382\) −14.9719 + 25.9320i −0.766028 + 1.32680i
\(383\) −36.2451 −1.85204 −0.926020 0.377475i \(-0.876792\pi\)
−0.926020 + 0.377475i \(0.876792\pi\)
\(384\) −2.71163 + 4.69668i −0.138377 + 0.239676i
\(385\) −54.6126 28.4787i −2.78331 1.45141i
\(386\) 7.67151 13.2874i 0.390470 0.676313i
\(387\) −1.66752 + 2.88823i −0.0847649 + 0.146817i
\(388\) 1.16476 0.0591317
\(389\) 18.5269 32.0895i 0.939349 1.62700i 0.172661 0.984981i \(-0.444763\pi\)
0.766688 0.642020i \(-0.221903\pi\)
\(390\) 18.5953 + 1.16840i 0.941611 + 0.0591640i
\(391\) 0.193809 0.00980134
\(392\) −9.08284 + 19.4064i −0.458753 + 0.980170i
\(393\) 5.95196 + 10.3091i 0.300237 + 0.520025i
\(394\) 23.9381 1.20598
\(395\) −9.72017 + 16.8358i −0.489075 + 0.847102i
\(396\) 1.36932 + 2.37173i 0.0688108 + 0.119184i
\(397\) −30.9842 −1.55505 −0.777527 0.628849i \(-0.783526\pi\)
−0.777527 + 0.628849i \(0.783526\pi\)
\(398\) −5.87221 −0.294347
\(399\) −10.0883 + 6.41690i −0.505046 + 0.321247i
\(400\) 17.6159 + 30.5117i 0.880797 + 1.52558i
\(401\) 15.1060 26.1644i 0.754359 1.30659i −0.191334 0.981525i \(-0.561281\pi\)
0.945693 0.325062i \(-0.105385\pi\)
\(402\) 0.188503 0.326496i 0.00940167 0.0162842i
\(403\) 16.7367 25.1953i 0.833716 1.25507i
\(404\) 2.51286 + 4.35239i 0.125019 + 0.216540i
\(405\) −2.10660 3.64874i −0.104678 0.181308i
\(406\) 0.400817 0.254950i 0.0198922 0.0126529i
\(407\) −11.9305 + 20.6642i −0.591373 + 1.02429i
\(408\) 0.272868 + 0.472622i 0.0135090 + 0.0233983i
\(409\) 6.92988 + 12.0029i 0.342661 + 0.593506i 0.984926 0.172977i \(-0.0553386\pi\)
−0.642265 + 0.766482i \(0.722005\pi\)
\(410\) 4.04304 + 7.00276i 0.199672 + 0.345842i
\(411\) −6.76423 11.7160i −0.333655 0.577907i
\(412\) 2.48591 4.30573i 0.122472 0.212128i
\(413\) 4.74160 + 2.47259i 0.233319 + 0.121668i
\(414\) −0.666643 1.15466i −0.0327637 0.0567484i
\(415\) 18.6463 + 32.2964i 0.915311 + 1.58537i
\(416\) −4.38214 8.82595i −0.214852 0.432728i
\(417\) −10.9150 + 18.9053i −0.534509 + 0.925796i
\(418\) 15.3126 26.5223i 0.748966 1.29725i
\(419\) −10.3550 17.9355i −0.505877 0.876204i −0.999977 0.00679920i \(-0.997836\pi\)
0.494100 0.869405i \(-0.335498\pi\)
\(420\) −0.237087 5.51993i −0.0115687 0.269345i
\(421\) −37.6001 −1.83252 −0.916259 0.400586i \(-0.868806\pi\)
−0.916259 + 0.400586i \(0.868806\pi\)
\(422\) 5.59624 0.272421
\(423\) 0.636455 + 1.10237i 0.0309455 + 0.0535992i
\(424\) 12.0581 20.8852i 0.585591 1.01427i
\(425\) 2.27339 0.110276
\(426\) −1.99849 3.46149i −0.0968271 0.167710i
\(427\) −8.40631 + 5.34704i −0.406810 + 0.258761i
\(428\) −6.86575 −0.331869
\(429\) 19.8828 + 1.24929i 0.959952 + 0.0603165i
\(430\) −8.61707 + 14.9252i −0.415552 + 0.719757i
\(431\) −24.8176 −1.19542 −0.597712 0.801711i \(-0.703923\pi\)
−0.597712 + 0.801711i \(0.703923\pi\)
\(432\) 1.38152 2.39286i 0.0664684 0.115127i
\(433\) 12.3713 21.4277i 0.594526 1.02975i −0.399087 0.916913i \(-0.630673\pi\)
0.993614 0.112837i \(-0.0359937\pi\)
\(434\) 24.1386 + 12.5875i 1.15869 + 0.604220i
\(435\) −0.308376 + 0.534122i −0.0147855 + 0.0256092i
\(436\) 0.467126 0.0223713
\(437\) 2.45619 4.25424i 0.117495 0.203508i
\(438\) −4.33173 7.50277i −0.206978 0.358496i
\(439\) 14.0060 24.2592i 0.668472 1.15783i −0.309860 0.950782i \(-0.600282\pi\)
0.978331 0.207045i \(-0.0663846\pi\)
\(440\) 35.6289 + 61.7112i 1.69854 + 2.94196i
\(441\) 2.96732 6.33996i 0.141301 0.301903i
\(442\) 0.786894 + 0.0494427i 0.0374287 + 0.00235175i
\(443\) −14.5799 25.2531i −0.692711 1.19981i −0.970946 0.239298i \(-0.923083\pi\)
0.278235 0.960513i \(-0.410251\pi\)
\(444\) −2.14042 −0.101580
\(445\) 55.6019 2.63578
\(446\) 9.23056 0.437079
\(447\) 7.66408 0.362499
\(448\) 19.8197 12.6068i 0.936393 0.595616i
\(449\) −12.6725 + 21.9494i −0.598052 + 1.03586i 0.395056 + 0.918657i \(0.370725\pi\)
−0.993108 + 0.117200i \(0.962608\pi\)
\(450\) −7.81976 13.5442i −0.368627 0.638480i
\(451\) 4.32298 + 7.48761i 0.203561 + 0.352578i
\(452\) 2.83800 0.133488
\(453\) −1.87363 + 3.24522i −0.0880307 + 0.152474i
\(454\) −4.51493 −0.211896
\(455\) −34.4016 20.7818i −1.61277 0.974265i
\(456\) 13.8325 0.647767
\(457\) −6.36623 + 11.0266i −0.297799 + 0.515804i −0.975632 0.219412i \(-0.929586\pi\)
0.677833 + 0.735216i \(0.262919\pi\)
\(458\) 5.76669 0.269460
\(459\) −0.0891447 0.154403i −0.00416092 0.00720692i
\(460\) 1.13502 + 1.96591i 0.0529206 + 0.0916611i
\(461\) −0.654119 + 1.13297i −0.0304653 + 0.0527675i −0.880856 0.473384i \(-0.843032\pi\)
0.850391 + 0.526152i \(0.176366\pi\)
\(462\) 0.769413 + 17.9137i 0.0357963 + 0.833422i
\(463\) 17.5365 0.814992 0.407496 0.913207i \(-0.366402\pi\)
0.407496 + 0.913207i \(0.366402\pi\)
\(464\) −0.404468 −0.0187770
\(465\) −35.3454 −1.63910
\(466\) −2.95570 −0.136920
\(467\) −21.5106 37.2575i −0.995392 1.72407i −0.580735 0.814092i \(-0.697235\pi\)
−0.414657 0.909978i \(-0.636098\pi\)
\(468\) 0.794729 + 1.60064i 0.0367364 + 0.0739897i
\(469\) −0.686194 + 0.436471i −0.0316855 + 0.0201543i
\(470\) 3.28894 + 5.69661i 0.151707 + 0.262765i
\(471\) 1.63089 2.82478i 0.0751473 0.130159i
\(472\) −3.09339 5.35791i −0.142385 0.246618i
\(473\) −9.21370 + 15.9586i −0.423646 + 0.733777i
\(474\) 5.65934 0.259942
\(475\) 28.8112 49.9025i 1.32195 2.28968i
\(476\) −0.0100327 0.233586i −0.000459850 0.0107064i
\(477\) −3.93930 + 6.82307i −0.180368 + 0.312407i
\(478\) −4.88186 + 8.45563i −0.223291 + 0.386752i
\(479\) 9.45378 0.431954 0.215977 0.976398i \(-0.430706\pi\)
0.215977 + 0.976398i \(0.430706\pi\)
\(480\) −5.75734 + 9.97201i −0.262786 + 0.455158i
\(481\) −8.61544 + 12.9696i −0.392830 + 0.591362i
\(482\) 36.6429 1.66904
\(483\) 0.123416 + 2.87341i 0.00561561 + 0.130745i
\(484\) 4.83994 + 8.38303i 0.219997 + 0.381047i
\(485\) −9.90095 −0.449579
\(486\) −0.613260 + 1.06220i −0.0278181 + 0.0481823i
\(487\) −3.93156 6.80966i −0.178156 0.308575i 0.763093 0.646289i \(-0.223680\pi\)
−0.941249 + 0.337714i \(0.890346\pi\)
\(488\) 11.5263 0.521770
\(489\) −10.4509 −0.472605
\(490\) 15.3339 32.7623i 0.692713 1.48005i
\(491\) −14.7190 25.4941i −0.664261 1.15053i −0.979485 0.201516i \(-0.935413\pi\)
0.315224 0.949017i \(-0.397920\pi\)
\(492\) −0.387787 + 0.671666i −0.0174828 + 0.0302810i
\(493\) −0.0130495 + 0.0226023i −0.000587718 + 0.00101796i
\(494\) 11.0578 16.6463i 0.497514 0.748952i
\(495\) −11.6398 20.1607i −0.523169 0.906156i
\(496\) −11.5898 20.0742i −0.520399 0.901357i
\(497\) 0.369981 + 8.61402i 0.0165959 + 0.386392i
\(498\) 5.42819 9.40190i 0.243243 0.421309i
\(499\) −4.14699 7.18281i −0.185645 0.321547i 0.758149 0.652082i \(-0.226104\pi\)
−0.943794 + 0.330535i \(0.892771\pi\)
\(500\) 8.09318 + 14.0178i 0.361938 + 0.626895i
\(501\) 5.58474 + 9.67305i 0.249508 + 0.432160i
\(502\) 13.6220 + 23.5940i 0.607981 + 1.05305i
\(503\) 1.86348 3.22764i 0.0830885 0.143913i −0.821487 0.570228i \(-0.806855\pi\)
0.904575 + 0.426314i \(0.140188\pi\)
\(504\) −6.83333 + 4.34650i −0.304381 + 0.193609i
\(505\) −21.3603 36.9972i −0.950523 1.64635i
\(506\) −3.68346 6.37993i −0.163750 0.283623i
\(507\) 12.8978 + 1.62723i 0.572809 + 0.0722677i
\(508\) −3.25462 + 5.63717i −0.144401 + 0.250109i
\(509\) 0.636994 1.10331i 0.0282342 0.0489032i −0.851563 0.524252i \(-0.824345\pi\)
0.879797 + 0.475349i \(0.157678\pi\)
\(510\) −0.460663 0.797891i −0.0203985 0.0353312i
\(511\) 0.801934 + 18.6709i 0.0354755 + 0.825951i
\(512\) −24.4665 −1.08128
\(513\) −4.51901 −0.199519
\(514\) 1.98300 + 3.43466i 0.0874665 + 0.151496i
\(515\) −21.1313 + 36.6005i −0.931157 + 1.61281i
\(516\) −1.65300 −0.0727694
\(517\) 3.51666 + 6.09103i 0.154662 + 0.267883i
\(518\) −12.4256 6.47958i −0.545952 0.284696i
\(519\) −12.7666 −0.560393
\(520\) 20.6784 + 41.6479i 0.906810 + 1.82638i
\(521\) 3.53913 6.12995i 0.155052 0.268558i −0.778026 0.628232i \(-0.783779\pi\)
0.933078 + 0.359674i \(0.117112\pi\)
\(522\) 0.179545 0.00785845
\(523\) −6.12307 + 10.6055i −0.267743 + 0.463745i −0.968279 0.249873i \(-0.919611\pi\)
0.700535 + 0.713618i \(0.252945\pi\)
\(524\) −2.95007 + 5.10967i −0.128874 + 0.223217i
\(525\) 1.44767 + 33.7052i 0.0631817 + 1.47102i
\(526\) −4.58870 + 7.94786i −0.200077 + 0.346543i
\(527\) −1.49570 −0.0651538
\(528\) 7.63343 13.2215i 0.332202 0.575391i
\(529\) 10.9092 + 18.8952i 0.474311 + 0.821532i
\(530\) −20.3567 + 35.2588i −0.884238 + 1.53154i
\(531\) 1.01059 + 1.75040i 0.0438561 + 0.0759610i
\(532\) −5.25452 2.74006i −0.227812 0.118797i
\(533\) 2.50898 + 5.05328i 0.108676 + 0.218882i
\(534\) −8.09322 14.0179i −0.350228 0.606613i
\(535\) 58.3618 2.52320
\(536\) 0.940873 0.0406395
\(537\) −12.5526 −0.541686
\(538\) −3.71854 −0.160317
\(539\) 16.3955 35.0307i 0.706206 1.50888i
\(540\) 1.04413 1.80849i 0.0449322 0.0778249i
\(541\) 12.5429 + 21.7249i 0.539261 + 0.934027i 0.998944 + 0.0459441i \(0.0146296\pi\)
−0.459683 + 0.888083i \(0.652037\pi\)
\(542\) 13.2563 + 22.9605i 0.569405 + 0.986239i
\(543\) 13.6821 0.587155
\(544\) −0.243632 + 0.421983i −0.0104456 + 0.0180924i
\(545\) −3.97077 −0.170089
\(546\) −0.231950 + 11.6980i −0.00992654 + 0.500627i
\(547\) −1.32955 −0.0568473 −0.0284236 0.999596i \(-0.509049\pi\)
−0.0284236 + 0.999596i \(0.509049\pi\)
\(548\) 3.35267 5.80699i 0.143219 0.248062i
\(549\) −3.76557 −0.160711
\(550\) −43.2071 74.8369i −1.84236 3.19106i
\(551\) 0.330758 + 0.572890i 0.0140908 + 0.0244059i
\(552\) 1.66371 2.88162i 0.0708120 0.122650i
\(553\) −10.8245 5.64464i −0.460305 0.240034i
\(554\) −11.6603 −0.495399
\(555\) 18.1945 0.772312
\(556\) −10.8199 −0.458868
\(557\) −7.92132 −0.335637 −0.167819 0.985818i \(-0.553672\pi\)
−0.167819 + 0.985818i \(0.553672\pi\)
\(558\) 5.14476 + 8.91098i 0.217795 + 0.377232i
\(559\) −6.65354 + 10.0162i −0.281415 + 0.423638i
\(560\) −25.9881 + 16.5304i −1.09820 + 0.698535i
\(561\) −0.492558 0.853136i −0.0207958 0.0360194i
\(562\) −19.4244 + 33.6441i −0.819370 + 1.41919i
\(563\) −2.87547 4.98046i −0.121187 0.209901i 0.799049 0.601266i \(-0.205337\pi\)
−0.920236 + 0.391364i \(0.872003\pi\)
\(564\) −0.315457 + 0.546387i −0.0132831 + 0.0230070i
\(565\) −24.1242 −1.01491
\(566\) 8.90111 15.4172i 0.374141 0.648032i
\(567\) 2.23241 1.41998i 0.0937524 0.0596335i
\(568\) 4.98752 8.63864i 0.209272 0.362469i
\(569\) 3.22149 5.57978i 0.135052 0.233917i −0.790565 0.612378i \(-0.790213\pi\)
0.925617 + 0.378461i \(0.123547\pi\)
\(570\) −23.3524 −0.978123
\(571\) −16.3076 + 28.2456i −0.682451 + 1.18204i 0.291779 + 0.956486i \(0.405753\pi\)
−0.974231 + 0.225555i \(0.927581\pi\)
\(572\) 4.39118 + 8.84416i 0.183604 + 0.369793i
\(573\) 24.4136 1.01989
\(574\) −4.28450 + 2.72526i −0.178831 + 0.113750i
\(575\) −6.93053 12.0040i −0.289023 0.500603i
\(576\) 8.87816 0.369923
\(577\) −10.1701 + 17.6152i −0.423388 + 0.733330i −0.996268 0.0863089i \(-0.972493\pi\)
0.572880 + 0.819639i \(0.305826\pi\)
\(578\) 10.4059 + 18.0236i 0.432830 + 0.749683i
\(579\) −12.5094 −0.519872
\(580\) −0.305691 −0.0126931
\(581\) −19.7599 + 12.5688i −0.819778 + 0.521440i
\(582\) 1.44115 + 2.49614i 0.0597376 + 0.103468i
\(583\) −21.7661 + 37.7000i −0.901461 + 1.56138i
\(584\) 10.8105 18.7243i 0.447340 0.774816i
\(585\) −6.75553 13.6061i −0.279307 0.562545i
\(586\) −12.7221 22.0354i −0.525547 0.910274i
\(587\) −14.8490 25.7192i −0.612883 1.06154i −0.990752 0.135685i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(588\) 3.45675 0.297491i 0.142554 0.0122683i
\(589\) −18.9554 + 32.8317i −0.781044 + 1.35281i
\(590\) 5.22234 + 9.04535i 0.215000 + 0.372391i
\(591\) −9.75853 16.9023i −0.401412 0.695266i
\(592\) 5.96601 + 10.3334i 0.245201 + 0.424701i
\(593\) 8.00200 + 13.8599i 0.328603 + 0.569157i 0.982235 0.187656i \(-0.0600889\pi\)
−0.653632 + 0.756813i \(0.726756\pi\)
\(594\) −3.38850 + 5.86905i −0.139032 + 0.240810i
\(595\) 0.0852827 + 1.98558i 0.00349625 + 0.0814008i
\(596\) 1.89934 + 3.28975i 0.0777999 + 0.134753i
\(597\) 2.39385 + 4.14627i 0.0979737 + 0.169695i
\(598\) −2.13781 4.30572i −0.0874218 0.176074i
\(599\) −8.13858 + 14.0964i −0.332533 + 0.575965i −0.983008 0.183563i \(-0.941237\pi\)
0.650475 + 0.759528i \(0.274570\pi\)
\(600\) 19.5153 33.8016i 0.796711 1.37994i
\(601\) 21.2956 + 36.8850i 0.868664 + 1.50457i 0.863362 + 0.504585i \(0.168354\pi\)
0.00530223 + 0.999986i \(0.498312\pi\)
\(602\) −9.59609 5.00405i −0.391107 0.203950i
\(603\) −0.307378 −0.0125174
\(604\) −1.85731 −0.0755730
\(605\) −41.1416 71.2593i −1.67264 2.89710i
\(606\) −6.21828 + 10.7704i −0.252600 + 0.437517i
\(607\) −18.6270 −0.756045 −0.378022 0.925796i \(-0.623396\pi\)
−0.378022 + 0.925796i \(0.623396\pi\)
\(608\) 6.17522 + 10.6958i 0.250438 + 0.433772i
\(609\) −0.343411 0.179078i −0.0139157 0.00725661i
\(610\) −19.4589 −0.787869
\(611\) 2.04101 + 4.11074i 0.0825703 + 0.166303i
\(612\) 0.0441842 0.0765294i 0.00178604 0.00309352i
\(613\) 20.3580 0.822252 0.411126 0.911579i \(-0.365136\pi\)
0.411126 + 0.911579i \(0.365136\pi\)
\(614\) −8.54127 + 14.7939i −0.344698 + 0.597034i
\(615\) 3.29635 5.70945i 0.132922 0.230227i
\(616\) −37.7567 + 24.0161i −1.52126 + 0.967636i
\(617\) 15.7193 27.2266i 0.632835 1.09610i −0.354134 0.935195i \(-0.615224\pi\)
0.986969 0.160908i \(-0.0514423\pi\)
\(618\) 12.3032 0.494908
\(619\) 4.84802 8.39703i 0.194859 0.337505i −0.751996 0.659168i \(-0.770909\pi\)
0.946854 + 0.321663i \(0.104242\pi\)
\(620\) −8.75941 15.1717i −0.351786 0.609312i
\(621\) −0.543523 + 0.941410i −0.0218108 + 0.0377775i
\(622\) −2.80869 4.86479i −0.112618 0.195060i
\(623\) 1.49830 + 34.8839i 0.0600281 + 1.39759i
\(624\) 5.51237 8.29825i 0.220671 0.332196i
\(625\) −36.9177 63.9434i −1.47671 2.55773i
\(626\) −16.5629 −0.661985
\(627\) −24.9692 −0.997175
\(628\) 1.61669 0.0645128
\(629\) 0.769931 0.0306992
\(630\) 11.5362 7.33787i 0.459612 0.292348i
\(631\) −9.65738 + 16.7271i −0.384454 + 0.665895i −0.991693 0.128625i \(-0.958944\pi\)
0.607239 + 0.794519i \(0.292277\pi\)
\(632\) 7.06186 + 12.2315i 0.280906 + 0.486543i
\(633\) −2.28135 3.95141i −0.0906753 0.157054i
\(634\) −7.02953 −0.279178
\(635\) 27.6657 47.9184i 1.09788 1.90158i
\(636\) −3.90500 −0.154843
\(637\) 12.1112 22.1431i 0.479864 0.877343i
\(638\) 0.992052 0.0392757
\(639\) −1.62940 + 2.82220i −0.0644580 + 0.111644i
\(640\) 22.8493 0.903198
\(641\) −9.22686 15.9814i −0.364439 0.631227i 0.624247 0.781227i \(-0.285406\pi\)
−0.988686 + 0.150000i \(0.952073\pi\)
\(642\) −8.49495 14.7137i −0.335269 0.580703i
\(643\) 10.8340 18.7650i 0.427250 0.740019i −0.569378 0.822076i \(-0.692816\pi\)
0.996628 + 0.0820574i \(0.0261491\pi\)
\(644\) −1.20280 + 0.765072i −0.0473971 + 0.0301481i
\(645\) 14.0512 0.553267
\(646\) −0.988197 −0.0388801
\(647\) −21.7371 −0.854573 −0.427287 0.904116i \(-0.640530\pi\)
−0.427287 + 0.904116i \(0.640530\pi\)
\(648\) −3.06096 −0.120246
\(649\) 5.58392 + 9.67163i 0.219188 + 0.379645i
\(650\) −25.0767 50.5063i −0.983588 1.98102i
\(651\) −0.952450 22.1753i −0.0373295 0.869117i
\(652\) −2.58997 4.48596i −0.101431 0.175684i
\(653\) 11.2916 19.5576i 0.441875 0.765350i −0.555954 0.831213i \(-0.687647\pi\)
0.997829 + 0.0658635i \(0.0209802\pi\)
\(654\) 0.577972 + 1.00108i 0.0226005 + 0.0391452i
\(655\) 25.0768 43.4344i 0.979834 1.69712i
\(656\) 4.32353 0.168805
\(657\) −3.53172 + 6.11712i −0.137785 + 0.238651i
\(658\) −3.48535 + 2.21694i −0.135873 + 0.0864255i
\(659\) 1.42864 2.47447i 0.0556517 0.0963916i −0.836857 0.547421i \(-0.815610\pi\)
0.892509 + 0.451029i \(0.148943\pi\)
\(660\) 5.76922 9.99258i 0.224567 0.388961i
\(661\) 9.63310 0.374684 0.187342 0.982295i \(-0.440013\pi\)
0.187342 + 0.982295i \(0.440013\pi\)
\(662\) 15.0361 26.0433i 0.584395 1.01220i
\(663\) −0.285872 0.575768i −0.0111024 0.0223610i
\(664\) 27.0937 1.05144
\(665\) 44.6656 + 23.2917i 1.73206 + 0.903214i
\(666\) −2.64833 4.58704i −0.102621 0.177744i
\(667\) 0.159128 0.00616144
\(668\) −2.76806 + 4.79441i −0.107099 + 0.185501i
\(669\) −3.76290 6.51754i −0.145482 0.251983i
\(670\) −1.58840 −0.0613654
\(671\) −20.8062 −0.803216
\(672\) −6.41146 3.34337i −0.247327 0.128973i
\(673\) 15.4999 + 26.8466i 0.597476 + 1.03486i 0.993192 + 0.116486i \(0.0371631\pi\)
−0.395716 + 0.918373i \(0.629504\pi\)
\(674\) −14.5417 + 25.1870i −0.560127 + 0.970168i
\(675\) −6.37556 + 11.0428i −0.245395 + 0.425037i
\(676\) 2.49789 + 5.93953i 0.0960727 + 0.228443i
\(677\) −5.44610 9.43293i −0.209311 0.362537i 0.742187 0.670193i \(-0.233789\pi\)
−0.951498 + 0.307656i \(0.900455\pi\)
\(678\) 3.51143 + 6.08198i 0.134856 + 0.233577i
\(679\) −0.266800 6.21173i −0.0102389 0.238384i
\(680\) 1.14965 1.99125i 0.0440871 0.0763611i
\(681\) 1.84054 + 3.18791i 0.0705298 + 0.122161i
\(682\) 28.4267 + 49.2365i 1.08852 + 1.88536i
\(683\) 13.2641 + 22.9742i 0.507538 + 0.879082i 0.999962 + 0.00872632i \(0.00277771\pi\)
−0.492424 + 0.870356i \(0.663889\pi\)
\(684\) −1.11992 1.93975i −0.0428210 0.0741682i
\(685\) −28.4991 + 49.3619i −1.08890 + 1.88602i
\(686\) 20.9678 + 8.73743i 0.800556 + 0.333597i
\(687\) −2.35083 4.07176i −0.0896898 0.155347i
\(688\) 4.60743 + 7.98031i 0.175657 + 0.304246i
\(689\) −15.7181 + 23.6618i −0.598812 + 0.901444i
\(690\) −2.80871 + 4.86482i −0.106926 + 0.185201i
\(691\) 2.37760 4.11812i 0.0904480 0.156661i −0.817252 0.576281i \(-0.804503\pi\)
0.907700 + 0.419620i \(0.137837\pi\)
\(692\) −3.16387 5.47999i −0.120272 0.208318i
\(693\) 12.3349 7.84593i 0.468565 0.298042i
\(694\) −2.68299 −0.101845
\(695\) 91.9741 3.48878
\(696\) 0.224040 + 0.388048i 0.00849221 + 0.0147089i
\(697\) 0.139491 0.241605i 0.00528360 0.00915146i
\(698\) 34.9837 1.32415
\(699\) 1.20491 + 2.08697i 0.0455740 + 0.0789365i
\(700\) −14.1089 + 8.97434i −0.533268 + 0.339198i
\(701\) 19.5899 0.739898 0.369949 0.929052i \(-0.379375\pi\)
0.369949 + 0.929052i \(0.379375\pi\)
\(702\) −2.44695 + 3.68361i −0.0923543 + 0.139029i
\(703\) 9.75753 16.9005i 0.368012 0.637416i
\(704\) 49.0552 1.84884
\(705\) 2.68152 4.64452i 0.100992 0.174923i
\(706\) −6.30829 + 10.9263i −0.237416 + 0.411216i
\(707\) 22.6360 14.3982i 0.851314 0.541499i
\(708\) −0.500898 + 0.867581i −0.0188249 + 0.0326057i
\(709\) −16.1980 −0.608327 −0.304164 0.952620i \(-0.598377\pi\)
−0.304164 + 0.952620i \(0.598377\pi\)
\(710\) −8.42005 + 14.5840i −0.315999 + 0.547326i
\(711\) −2.30707 3.99596i −0.0865219 0.149860i
\(712\) 20.1978 34.9836i 0.756945 1.31107i
\(713\) 4.55972 + 7.89767i 0.170763 + 0.295770i
\(714\) 0.488174 0.310515i 0.0182694 0.0116207i
\(715\) −37.3269 75.1791i −1.39595 2.81154i
\(716\) −3.11084 5.38813i −0.116257 0.201364i
\(717\) 7.96050 0.297290
\(718\) −0.605926 −0.0226129
\(719\) −27.6928 −1.03277 −0.516384 0.856357i \(-0.672722\pi\)
−0.516384 + 0.856357i \(0.672722\pi\)
\(720\) −11.6413 −0.433844
\(721\) −23.5321 12.2713i −0.876382 0.457005i
\(722\) −0.871712 + 1.50985i −0.0324418 + 0.0561908i
\(723\) −14.9378 25.8730i −0.555541 0.962225i
\(724\) 3.39074 + 5.87293i 0.126016 + 0.218266i
\(725\) 1.86658 0.0693229
\(726\) −11.9769 + 20.7445i −0.444503 + 0.769902i
\(727\) 29.2681 1.08549 0.542746 0.839897i \(-0.317384\pi\)
0.542746 + 0.839897i \(0.317384\pi\)
\(728\) −25.5722 + 14.0957i −0.947767 + 0.522421i
\(729\) 1.00000 0.0370370
\(730\) −18.2505 + 31.6107i −0.675480 + 1.16997i
\(731\) 0.594603 0.0219922
\(732\) −0.933197 1.61634i −0.0344920 0.0597418i
\(733\) 11.0284 + 19.1017i 0.407343 + 0.705538i 0.994591 0.103869i \(-0.0331222\pi\)
−0.587248 + 0.809407i \(0.699789\pi\)
\(734\) 12.8471 22.2518i 0.474194 0.821328i
\(735\) −29.3838 + 2.52880i −1.08384 + 0.0932761i
\(736\) 2.97090 0.109509
\(737\) −1.69838 −0.0625606
\(738\) −1.91922 −0.0706476
\(739\) −9.72468 −0.357728 −0.178864 0.983874i \(-0.557242\pi\)
−0.178864 + 0.983874i \(0.557242\pi\)
\(740\) 4.50901 + 7.80984i 0.165755 + 0.287095i
\(741\) −16.2614 1.02175i −0.597379 0.0375350i
\(742\) −22.6695 11.8214i −0.832223 0.433978i
\(743\) 18.6574 + 32.3156i 0.684475 + 1.18554i 0.973602 + 0.228254i \(0.0733016\pi\)
−0.289127 + 0.957291i \(0.593365\pi\)
\(744\) −12.8395 + 22.2387i −0.470719 + 0.815309i
\(745\) −16.1452 27.9643i −0.591514 1.02453i
\(746\) −17.4270 + 30.1845i −0.638049 + 1.10513i
\(747\) −8.85136 −0.323854
\(748\) 0.244135 0.422854i 0.00892645 0.0154611i
\(749\) 1.57267 + 36.6155i 0.0574642 + 1.33790i
\(750\) −20.0273 + 34.6883i −0.731293 + 1.26664i
\(751\) −0.911661 + 1.57904i −0.0332670 + 0.0576201i −0.882180 0.470913i \(-0.843924\pi\)
0.848913 + 0.528533i \(0.177258\pi\)
\(752\) 3.51710 0.128256
\(753\) 11.1062 19.2366i 0.404733 0.701019i
\(754\) 0.646083 + 0.0405952i 0.0235289 + 0.00147839i
\(755\) 15.7880 0.574583
\(756\) 1.16276 + 0.606342i 0.0422891 + 0.0220524i
\(757\) −4.43646 7.68417i −0.161246 0.279286i 0.774070 0.633100i \(-0.218218\pi\)
−0.935316 + 0.353814i \(0.884885\pi\)
\(758\) −43.0624 −1.56410
\(759\) −3.00317 + 5.20165i −0.109008 + 0.188808i
\(760\) −29.1396 50.4713i −1.05701 1.83079i
\(761\) 24.0973 0.873527 0.436764 0.899576i \(-0.356125\pi\)
0.436764 + 0.899576i \(0.356125\pi\)
\(762\) −16.1077 −0.583521
\(763\) −0.107000 2.49121i −0.00387367 0.0901879i
\(764\) 6.05025 + 10.4793i 0.218890 + 0.379129i
\(765\) −0.375585 + 0.650532i −0.0135793 + 0.0235200i
\(766\) 22.2277 38.4995i 0.803119 1.39104i
\(767\) 3.24081 + 6.52724i 0.117019 + 0.235685i
\(768\) 5.55229 + 9.61685i 0.200351 + 0.347018i
\(769\) −20.3128 35.1829i −0.732499 1.26873i −0.955812 0.293979i \(-0.905020\pi\)
0.223312 0.974747i \(-0.428313\pi\)
\(770\) 63.7418 40.5445i 2.29709 1.46112i
\(771\) 1.61677 2.80033i 0.0582266 0.100851i
\(772\) −3.10012 5.36956i −0.111576 0.193255i
\(773\) 0.0147281 + 0.0255098i 0.000529733 + 0.000917524i 0.866290 0.499541i \(-0.166498\pi\)
−0.865760 + 0.500459i \(0.833165\pi\)
\(774\) −2.04525 3.54248i −0.0735150 0.127332i
\(775\) 53.4858 + 92.6400i 1.92126 + 3.32773i
\(776\) −3.59660 + 6.22949i −0.129110 + 0.223626i
\(777\) 0.490285 + 11.4150i 0.0175889 + 0.409510i
\(778\) 22.7236 + 39.3584i 0.814680 + 1.41107i
\(779\) −3.53561 6.12385i −0.126676 0.219410i
\(780\) 4.16616 6.27168i 0.149172 0.224562i
\(781\) −9.00304 + 15.5937i −0.322154 + 0.557987i
\(782\) −0.118855 + 0.205863i −0.00425026 + 0.00736166i
\(783\) −0.0731926 0.126773i −0.00261569 0.00453051i
\(784\) −11.0712 15.8592i −0.395402 0.566399i
\(785\) −13.7425 −0.490492
\(786\) −14.6004 −0.520779
\(787\) 22.5887 + 39.1247i 0.805199 + 1.39465i 0.916156 + 0.400821i \(0.131275\pi\)
−0.110957 + 0.993825i \(0.535392\pi\)
\(788\) 4.83678 8.37755i 0.172303 0.298438i
\(789\) 7.48246 0.266383
\(790\) −11.9220 20.6495i −0.424165 0.734676i
\(791\) −0.650073 15.1352i −0.0231139 0.538146i
\(792\) −16.9130 −0.600977
\(793\) −13.5503 0.851400i −0.481184 0.0302341i
\(794\) 19.0014 32.9114i 0.674335 1.16798i
\(795\) 33.1942 1.17728
\(796\) −1.18650 + 2.05508i −0.0420545 + 0.0728405i
\(797\) −6.89239 + 11.9380i −0.244141 + 0.422864i −0.961890 0.273438i \(-0.911839\pi\)
0.717749 + 0.696302i \(0.245173\pi\)
\(798\) −0.629275 14.6510i −0.0222761 0.518639i
\(799\) 0.113473 0.196541i 0.00401439 0.00695313i
\(800\) 34.8488 1.23209
\(801\) −6.59852 + 11.4290i −0.233147 + 0.403823i
\(802\) 18.5278 + 32.0912i 0.654241 + 1.13318i
\(803\) −19.5141 + 33.7994i −0.688637 + 1.19275i
\(804\) −0.0761754 0.131940i −0.00268650 0.00465316i
\(805\) 10.2243 6.50344i 0.360361 0.229216i
\(806\) 16.4984 + 33.2290i 0.581131 + 1.17044i
\(807\) 1.51589 + 2.62560i 0.0533618 + 0.0924253i
\(808\) −31.0373 −1.09189
\(809\) −18.3976 −0.646825 −0.323413 0.946258i \(-0.604830\pi\)
−0.323413 + 0.946258i \(0.604830\pi\)
\(810\) 5.16759 0.181571
\(811\) −28.7233 −1.00861 −0.504306 0.863525i \(-0.668252\pi\)
−0.504306 + 0.863525i \(0.668252\pi\)
\(812\) −0.00823743 0.191787i −0.000289077 0.00673039i
\(813\) 10.8080 18.7200i 0.379054 0.656540i
\(814\) −14.6330 25.3451i −0.512887 0.888346i
\(815\) 22.0159 + 38.1326i 0.771182 + 1.33573i
\(816\) −0.492621 −0.0172452
\(817\) 7.53555 13.0520i 0.263635 0.456630i
\(818\) −16.9993 −0.594366
\(819\) 8.35429 4.60498i 0.291922 0.160911i
\(820\) 3.26765 0.114111
\(821\) −6.08215 + 10.5346i −0.212268 + 0.367660i −0.952424 0.304776i \(-0.901418\pi\)
0.740156 + 0.672436i \(0.234752\pi\)
\(822\) 16.5929 0.578745
\(823\) −6.64923 11.5168i −0.231777 0.401450i 0.726554 0.687110i \(-0.241121\pi\)
−0.958331 + 0.285659i \(0.907787\pi\)
\(824\) 15.3522 + 26.5909i 0.534821 + 0.926336i
\(825\) −35.2274 + 61.0156i −1.22646 + 2.12429i
\(826\) −5.53422 + 3.52017i −0.192560 + 0.122483i
\(827\) 39.3333 1.36775 0.683876 0.729598i \(-0.260293\pi\)
0.683876 + 0.729598i \(0.260293\pi\)
\(828\) −0.538791 −0.0187243
\(829\) 5.37918 0.186827 0.0934134 0.995627i \(-0.470222\pi\)
0.0934134 + 0.995627i \(0.470222\pi\)
\(830\) −45.7402 −1.58766
\(831\) 4.75341 + 8.23314i 0.164894 + 0.285604i
\(832\) 31.9477 + 2.00736i 1.10759 + 0.0695927i
\(833\) −1.24343 + 0.107011i −0.0430823 + 0.00370770i
\(834\) −13.3874 23.1877i −0.463569 0.802926i
\(835\) 23.5297 40.7546i 0.814278 1.41037i
\(836\) −6.18796 10.7179i −0.214015 0.370685i
\(837\) 4.19459 7.26525i 0.144986 0.251124i
\(838\) 25.4013 0.877475
\(839\) −14.7620 + 25.5686i −0.509642 + 0.882726i 0.490295 + 0.871556i \(0.336889\pi\)
−0.999938 + 0.0111700i \(0.996444\pi\)
\(840\) 30.2544 + 15.7767i 1.04388 + 0.544348i
\(841\) 14.4893 25.0962i 0.499631 0.865385i
\(842\) 23.0587 39.9388i 0.794654 1.37638i
\(843\) 31.6740 1.09091
\(844\) 1.13074 1.95850i 0.0389217 0.0674144i
\(845\) −21.2331 50.4885i −0.730442 1.73686i
\(846\) −1.56125 −0.0536769
\(847\) 43.5986 27.7319i 1.49806 0.952881i
\(848\) 10.8845 + 18.8524i 0.373774 + 0.647395i
\(849\) −14.5144 −0.498133
\(850\) −1.39418 + 2.41479i −0.0478200 + 0.0828266i
\(851\) −2.34717 4.06542i −0.0804600 0.139361i
\(852\) −1.61521 −0.0553362
\(853\) −12.4764 −0.427184 −0.213592 0.976923i \(-0.568516\pi\)
−0.213592 + 0.976923i \(0.568516\pi\)
\(854\) −0.524359 12.2083i −0.0179432 0.417759i
\(855\) 9.51976 + 16.4887i 0.325569 + 0.563902i
\(856\) 21.2004 36.7202i 0.724615 1.25507i
\(857\) −22.7205 + 39.3531i −0.776118 + 1.34428i 0.158046 + 0.987432i \(0.449481\pi\)
−0.934164 + 0.356844i \(0.883853\pi\)
\(858\) −13.5203 + 20.3534i −0.461577 + 0.694852i
\(859\) 26.2027 + 45.3845i 0.894026 + 1.54850i 0.835006 + 0.550241i \(0.185464\pi\)
0.0590202 + 0.998257i \(0.481202\pi\)
\(860\) 3.48222 + 6.03139i 0.118743 + 0.205669i
\(861\) 3.67086 + 1.91424i 0.125103 + 0.0652371i
\(862\) 15.2197 26.3613i 0.518384 0.897868i
\(863\) −12.9896 22.4986i −0.442170 0.765862i 0.555680 0.831396i \(-0.312458\pi\)
−0.997850 + 0.0655347i \(0.979125\pi\)
\(864\) −1.36650 2.36685i −0.0464892 0.0805217i
\(865\) 26.8943 + 46.5822i 0.914432 + 1.58384i
\(866\) 15.1736 + 26.2815i 0.515621 + 0.893083i
\(867\) 8.48411 14.6949i 0.288135 0.499065i
\(868\) 9.28252 5.90438i 0.315069 0.200408i
\(869\) −12.7474 22.0792i −0.432427 0.748986i
\(870\) −0.378229 0.655112i −0.0128232 0.0222104i
\(871\) −1.10609 0.0694985i −0.0374783 0.00235487i
\(872\) −1.44241 + 2.49833i −0.0488463 + 0.0846043i
\(873\) 1.17499 2.03514i 0.0397674 0.0688791i
\(874\) 3.01256 + 5.21792i 0.101902 + 0.176499i
\(875\) 72.9040 46.3724i 2.46461 1.56767i
\(876\) −3.50097 −0.118287
\(877\) −6.98130 −0.235742 −0.117871 0.993029i \(-0.537607\pi\)
−0.117871 + 0.993029i \(0.537607\pi\)
\(878\) 17.1787 + 29.7544i 0.579753 + 1.00416i
\(879\) −10.3725 + 17.9658i −0.349857 + 0.605970i
\(880\) −64.3224 −2.16831
\(881\) −10.2063 17.6779i −0.343859 0.595582i 0.641286 0.767302i \(-0.278401\pi\)
−0.985146 + 0.171720i \(0.945068\pi\)
\(882\) 4.91455 + 7.03992i 0.165482 + 0.237046i
\(883\) 2.69268 0.0906160 0.0453080 0.998973i \(-0.485573\pi\)
0.0453080 + 0.998973i \(0.485573\pi\)
\(884\) 0.176298 0.265397i 0.00592956 0.00892628i
\(885\) 4.25785 7.37481i 0.143126 0.247901i
\(886\) 35.7651 1.20155
\(887\) 12.7982 22.1672i 0.429722 0.744300i −0.567126 0.823631i \(-0.691945\pi\)
0.996848 + 0.0793304i \(0.0252782\pi\)
\(888\) 6.60929 11.4476i 0.221793 0.384157i
\(889\) 30.8089 + 16.0659i 1.03330 + 0.538832i
\(890\) −34.0984 + 59.0602i −1.14298 + 1.97970i
\(891\) 5.52538 0.185107
\(892\) 1.86507 3.23039i 0.0624471 0.108162i
\(893\) −2.87615 4.98163i −0.0962465 0.166704i
\(894\) −4.70008 + 8.14078i −0.157194 + 0.272268i
\(895\) 26.4434 + 45.8014i 0.883906 + 1.53097i
\(896\) 0.615719 + 14.3354i 0.0205697 + 0.478911i
\(897\) −2.16870 + 3.26473i −0.0724107 + 0.109006i
\(898\) −15.5431 26.9214i −0.518679 0.898379i
\(899\) −1.22805 −0.0409578
\(900\) −6.32005 −0.210668
\(901\) 1.40467 0.0467964
\(902\) −10.6044 −0.353089
\(903\) 0.378638 + 8.81557i 0.0126003 + 0.293364i
\(904\) −8.76330 + 15.1785i −0.291463 + 0.504829i
\(905\) −28.8227 49.9224i −0.958100 1.65948i
\(906\) −2.29804 3.98033i −0.0763473 0.132237i
\(907\) −56.9819 −1.89205 −0.946027 0.324088i \(-0.894943\pi\)
−0.946027 + 0.324088i \(0.894943\pi\)
\(908\) −0.912259 + 1.58008i −0.0302744 + 0.0524368i
\(909\) 10.1397 0.336313
\(910\) 43.1715 23.7967i 1.43112 0.788851i
\(911\) 43.0338 1.42577 0.712887 0.701279i \(-0.247387\pi\)
0.712887 + 0.701279i \(0.247387\pi\)
\(912\) −6.24310 + 10.8134i −0.206730 + 0.358067i
\(913\) −48.9071 −1.61859
\(914\) −7.80831 13.5244i −0.258276 0.447347i
\(915\) 7.93257 + 13.7396i 0.262243 + 0.454218i
\(916\) 1.16518 2.01815i 0.0384987 0.0666817i
\(917\) 27.9259 + 14.5625i 0.922196 + 0.480895i
\(918\) 0.218676 0.00721737
\(919\) −6.10412 −0.201356 −0.100678 0.994919i \(-0.532101\pi\)
−0.100678 + 0.994919i \(0.532101\pi\)
\(920\) −14.0191 −0.462195
\(921\) 13.9276 0.458931
\(922\) −0.802290 1.38961i −0.0264220 0.0457643i
\(923\) −6.50141 + 9.78715i −0.213997 + 0.322148i
\(924\) 6.42468 + 3.35027i 0.211357 + 0.110216i
\(925\) −27.5324 47.6876i −0.905261 1.56796i
\(926\) −10.7545 + 18.6273i −0.353413 + 0.612130i
\(927\) −5.01549 8.68709i −0.164730 0.285321i
\(928\) −0.200035 + 0.346471i −0.00656648 + 0.0113735i
\(929\) 1.89800 0.0622713 0.0311357 0.999515i \(-0.490088\pi\)
0.0311357 + 0.999515i \(0.490088\pi\)
\(930\) 21.6759 37.5438i 0.710782 1.23111i
\(931\) −13.4093 + 28.6503i −0.439473 + 0.938976i
\(932\) −0.597211 + 1.03440i −0.0195623 + 0.0338829i
\(933\) −2.28996 + 3.96633i −0.0749700 + 0.129852i
\(934\) 52.7664 1.72657
\(935\) −2.07525 + 3.59444i −0.0678679 + 0.117551i
\(936\) −11.0147 0.692086i −0.360028 0.0226216i
\(937\) 6.34000 0.207119 0.103559 0.994623i \(-0.466977\pi\)
0.103559 + 0.994623i \(0.466977\pi\)
\(938\) −0.0428026 0.996544i −0.00139755 0.0325383i
\(939\) 6.75197 + 11.6948i 0.220342 + 0.381644i
\(940\) 2.65817 0.0866999
\(941\) 8.66104 15.0014i 0.282342 0.489030i −0.689619 0.724172i \(-0.742222\pi\)
0.971961 + 0.235142i \(0.0755554\pi\)
\(942\) 2.00032 + 3.46465i 0.0651738 + 0.112884i
\(943\) −1.70098 −0.0553915
\(944\) 5.58463 0.181764
\(945\) −9.88395 5.15416i −0.321525 0.167665i
\(946\) −11.3008 19.5735i −0.367420 0.636391i
\(947\) −11.0324 + 19.1086i −0.358503 + 0.620946i −0.987711 0.156291i \(-0.950046\pi\)
0.629208 + 0.777237i \(0.283380\pi\)
\(948\) 1.14349 1.98059i 0.0371389 0.0643264i
\(949\) −14.0918 + 21.2136i −0.457440 + 0.688624i
\(950\) 35.3375 + 61.2064i 1.14650 + 1.98580i
\(951\) 2.86564 + 4.96343i 0.0929247 + 0.160950i
\(952\) 1.28027 + 0.667619i 0.0414937 + 0.0216377i
\(953\) 9.89509 17.1388i 0.320533 0.555180i −0.660065 0.751209i \(-0.729471\pi\)
0.980598 + 0.196028i \(0.0628045\pi\)
\(954\) −4.83163 8.36864i −0.156430 0.270945i
\(955\) −51.4297 89.0789i −1.66423 2.88252i
\(956\) 1.97280 + 3.41699i 0.0638048 + 0.110513i
\(957\) −0.404417 0.700471i −0.0130729 0.0226430i
\(958\) −5.79763 + 10.0418i −0.187313 + 0.324436i
\(959\) −31.7370 16.5498i −1.02484 0.534422i
\(960\) −18.7028 32.3941i −0.603629 1.04552i
\(961\) −19.6892 34.1027i −0.635136 1.10009i
\(962\) −8.49275 17.1050i −0.273817 0.551488i
\(963\) −6.92606 + 11.9963i −0.223189 + 0.386575i
\(964\) 7.40385 12.8238i 0.238462 0.413028i
\(965\) 26.3523 + 45.6436i 0.848311 + 1.46932i
\(966\) −3.12781 1.63105i −0.100636 0.0524783i
\(967\) −40.1430 −1.29091 −0.645457 0.763797i \(-0.723333\pi\)
−0.645457 + 0.763797i \(0.723333\pi\)
\(968\) −59.7800 −1.92140
\(969\) 0.402845 + 0.697749i 0.0129413 + 0.0224149i
\(970\) 6.07186 10.5168i 0.194956 0.337673i
\(971\) −30.8635 −0.990458 −0.495229 0.868762i \(-0.664916\pi\)
−0.495229 + 0.868762i \(0.664916\pi\)
\(972\) 0.247823 + 0.429243i 0.00794894 + 0.0137680i
\(973\) 2.47842 + 57.7034i 0.0794546 + 1.84989i
\(974\) 9.64428 0.309023
\(975\) −25.4390 + 38.2955i −0.814698 + 1.22644i
\(976\) −5.20222 + 9.01051i −0.166519 + 0.288419i
\(977\) 21.3229 0.682181 0.341090 0.940031i \(-0.389204\pi\)
0.341090 + 0.940031i \(0.389204\pi\)
\(978\) 6.40911 11.1009i 0.204941 0.354968i
\(979\) −36.4593 + 63.1494i −1.16524 + 2.01826i
\(980\) −8.36747 11.9861i −0.267289 0.382882i
\(981\) 0.471229 0.816192i 0.0150452 0.0260590i
\(982\) 36.1064 1.15220
\(983\) 18.7115 32.4092i 0.596803 1.03369i −0.396487 0.918040i \(-0.629771\pi\)
0.993290 0.115652i \(-0.0368959\pi\)
\(984\) −2.39485 4.14801i −0.0763451 0.132234i
\(985\) −41.1147 + 71.2128i −1.31002 + 2.26903i
\(986\) −0.0160054 0.0277222i −0.000509717 0.000882855i
\(987\) 2.98618 + 1.55719i 0.0950510 + 0.0495661i
\(988\) −3.59139 7.23332i −0.114257 0.230123i
\(989\) −1.81268 3.13965i −0.0576397 0.0998349i
\(990\) 28.5529 0.907470
\(991\) 3.31902 0.105432 0.0527161 0.998610i \(-0.483212\pi\)
0.0527161 + 0.998610i \(0.483212\pi\)
\(992\) −22.9276 −0.727953
\(993\) −24.5183 −0.778065
\(994\) −9.37669 4.88964i −0.297411 0.155090i
\(995\) 10.0858 17.4691i 0.319741 0.553807i
\(996\) −2.19357 3.79938i −0.0695060 0.120388i
\(997\) −12.0627 20.8932i −0.382029 0.661693i 0.609323 0.792922i \(-0.291441\pi\)
−0.991352 + 0.131229i \(0.958108\pi\)
\(998\) 10.1728 0.322013
\(999\) −2.15922 + 3.73988i −0.0683146 + 0.118324i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.j.c.172.4 yes 20
3.2 odd 2 819.2.n.f.172.7 20
7.2 even 3 273.2.l.c.16.7 yes 20
13.9 even 3 273.2.l.c.256.7 yes 20
21.2 odd 6 819.2.s.f.289.4 20
39.35 odd 6 819.2.s.f.802.4 20
91.9 even 3 inner 273.2.j.c.100.4 20
273.191 odd 6 819.2.n.f.100.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.4 20 91.9 even 3 inner
273.2.j.c.172.4 yes 20 1.1 even 1 trivial
273.2.l.c.16.7 yes 20 7.2 even 3
273.2.l.c.256.7 yes 20 13.9 even 3
819.2.n.f.100.7 20 273.191 odd 6
819.2.n.f.172.7 20 3.2 odd 2
819.2.s.f.289.4 20 21.2 odd 6
819.2.s.f.802.4 20 39.35 odd 6