L(s) = 1 | − 1.93i·5-s + i·7-s − 1.93·11-s − 0.517i·17-s − i·19-s − 1.41·23-s − 2.73·25-s + 1.93·35-s − 1.73i·43-s + 0.517·47-s + 3.73i·55-s − 1.73·61-s − 73-s − 1.93i·77-s + 1.41·83-s + ⋯ |
L(s) = 1 | − 1.93i·5-s + i·7-s − 1.93·11-s − 0.517i·17-s − i·19-s − 1.41·23-s − 2.73·25-s + 1.93·35-s − 1.73i·43-s + 0.517·47-s + 3.73i·55-s − 1.73·61-s − 73-s − 1.93i·77-s + 1.41·83-s + ⋯ |
Λ(s)=(=(2736s/2ΓC(s)L(s)(−0.908+0.418i)Λ(1−s)
Λ(s)=(=(2736s/2ΓC(s)L(s)(−0.908+0.418i)Λ(1−s)
Degree: |
2 |
Conductor: |
2736
= 24⋅32⋅19
|
Sign: |
−0.908+0.418i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2736(2735,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2736, ( :0), −0.908+0.418i)
|
Particular Values
L(21) |
≈ |
0.5789843380 |
L(21) |
≈ |
0.5789843380 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1+iT |
good | 5 | 1+1.93iT−T2 |
| 7 | 1−iT−T2 |
| 11 | 1+1.93T+T2 |
| 13 | 1−T2 |
| 17 | 1+0.517iT−T2 |
| 23 | 1+1.41T+T2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1+T2 |
| 43 | 1+1.73iT−T2 |
| 47 | 1−0.517T+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1+1.73T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1+T2 |
| 83 | 1−1.41T+T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.768023651352264485095572631345, −8.035384069926729763254416096496, −7.49932610770339486630728059281, −6.06273402715115050056194350758, −5.32645538800995296924400381764, −5.04559306447479934794994027294, −4.12910019873926478865732751075, −2.71157440457987262398246981670, −1.92800372331885536156797424444, −0.33621524460988506890920204207,
1.97556073725916873941508651807, 2.87296423400372615319595313313, 3.59084606235859465546508087826, 4.47160297415081273664609038226, 5.79389342278027564452531630299, 6.22992941158733707669985663770, 7.24849135833409535718776060620, 7.71415707032317004086231541543, 8.161680858577362267074985390650, 9.735021410767016169660010183776