L(s) = 1 | − 1.93i·5-s + i·7-s − 1.93·11-s − 0.517i·17-s − i·19-s − 1.41·23-s − 2.73·25-s + 1.93·35-s − 1.73i·43-s + 0.517·47-s + 3.73i·55-s − 1.73·61-s − 73-s − 1.93i·77-s + 1.41·83-s + ⋯ |
L(s) = 1 | − 1.93i·5-s + i·7-s − 1.93·11-s − 0.517i·17-s − i·19-s − 1.41·23-s − 2.73·25-s + 1.93·35-s − 1.73i·43-s + 0.517·47-s + 3.73i·55-s − 1.73·61-s − 73-s − 1.93i·77-s + 1.41·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5789843380\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5789843380\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 1.93iT - T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + 1.93T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 0.517iT - T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 1.73iT - T^{2} \) |
| 47 | \( 1 - 0.517T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.73T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.768023651352264485095572631345, −8.035384069926729763254416096496, −7.49932610770339486630728059281, −6.06273402715115050056194350758, −5.32645538800995296924400381764, −5.04559306447479934794994027294, −4.12910019873926478865732751075, −2.71157440457987262398246981670, −1.92800372331885536156797424444, −0.33621524460988506890920204207,
1.97556073725916873941508651807, 2.87296423400372615319595313313, 3.59084606235859465546508087826, 4.47160297415081273664609038226, 5.79389342278027564452531630299, 6.22992941158733707669985663770, 7.24849135833409535718776060620, 7.71415707032317004086231541543, 8.161680858577362267074985390650, 9.735021410767016169660010183776