Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2736,1,Mod(2735,2736)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2736.2735");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2736.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2735.1 |
|
0 | 0 | 0 | − | 1.93185i | 0 | − | 1.00000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||
2735.2 | 0 | 0 | 0 | − | 1.93185i | 0 | 1.00000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2735.3 | 0 | 0 | 0 | − | 0.517638i | 0 | − | 1.00000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
2735.4 | 0 | 0 | 0 | − | 0.517638i | 0 | 1.00000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2735.5 | 0 | 0 | 0 | 0.517638i | 0 | − | 1.00000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2735.6 | 0 | 0 | 0 | 0.517638i | 0 | 1.00000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
2735.7 | 0 | 0 | 0 | 1.93185i | 0 | − | 1.00000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2735.8 | 0 | 0 | 0 | 1.93185i | 0 | 1.00000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
57.d | even | 2 | 1 | inner |
76.d | even | 2 | 1 | inner |
228.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2736.1.b.b | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
4.b | odd | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
12.b | even | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
19.b | odd | 2 | 1 | CM | 2736.1.b.b | ✓ | 8 |
57.d | even | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
76.d | even | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
228.b | odd | 2 | 1 | inner | 2736.1.b.b | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2736.1.b.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
2736.1.b.b | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
2736.1.b.b | ✓ | 8 | 4.b | odd | 2 | 1 | inner |
2736.1.b.b | ✓ | 8 | 12.b | even | 2 | 1 | inner |
2736.1.b.b | ✓ | 8 | 19.b | odd | 2 | 1 | CM |
2736.1.b.b | ✓ | 8 | 57.d | even | 2 | 1 | inner |
2736.1.b.b | ✓ | 8 | 76.d | even | 2 | 1 | inner |
2736.1.b.b | ✓ | 8 | 228.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .