Properties

Label 2736.1.b.b
Level 27362736
Weight 11
Character orbit 2736.b
Analytic conductor 1.3651.365
Analytic rank 00
Dimension 88
Projective image D12D_{12}
CM discriminant -19
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,1,Mod(2735,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.2735");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2736=243219 2736 = 2^{4} \cdot 3^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2736.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.365441874561.36544187456
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Projective image: D12D_{12}
Projective field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ247ζ245)q5ζ246q7+(ζ2411+ζ24)q11+(ζ2411ζ24)q17+ζ246q19+(ζ249+ζ243)q23++(ζ2411+ζ24)q95+O(q100) q + ( - \zeta_{24}^{7} - \zeta_{24}^{5}) q^{5} - \zeta_{24}^{6} q^{7} + ( - \zeta_{24}^{11} + \zeta_{24}) q^{11} + ( - \zeta_{24}^{11} - \zeta_{24}) q^{17} + \zeta_{24}^{6} q^{19} + ( - \zeta_{24}^{9} + \zeta_{24}^{3}) q^{23} + \cdots + ( - \zeta_{24}^{11} + \zeta_{24}) q^{95} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q258q738q85+O(q100) 8 q - 8 q^{25} - 8 q^{73} - 8 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2736Z)×\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times.

nn 10091009 12171217 17111711 20532053
χ(n)\chi(n) 1-1 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2735.1
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 + 0.965926i
−0.258819 0.965926i
0.258819 0.965926i
−0.965926 0.258819i
0.965926 0.258819i
0 0 0 1.93185i 0 1.00000i 0 0 0
2735.2 0 0 0 1.93185i 0 1.00000i 0 0 0
2735.3 0 0 0 0.517638i 0 1.00000i 0 0 0
2735.4 0 0 0 0.517638i 0 1.00000i 0 0 0
2735.5 0 0 0 0.517638i 0 1.00000i 0 0 0
2735.6 0 0 0 0.517638i 0 1.00000i 0 0 0
2735.7 0 0 0 1.93185i 0 1.00000i 0 0 0
2735.8 0 0 0 1.93185i 0 1.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2735.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
57.d even 2 1 inner
76.d even 2 1 inner
228.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.1.b.b 8
3.b odd 2 1 inner 2736.1.b.b 8
4.b odd 2 1 inner 2736.1.b.b 8
12.b even 2 1 inner 2736.1.b.b 8
19.b odd 2 1 CM 2736.1.b.b 8
57.d even 2 1 inner 2736.1.b.b 8
76.d even 2 1 inner 2736.1.b.b 8
228.b odd 2 1 inner 2736.1.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2736.1.b.b 8 1.a even 1 1 trivial
2736.1.b.b 8 3.b odd 2 1 inner
2736.1.b.b 8 4.b odd 2 1 inner
2736.1.b.b 8 12.b even 2 1 inner
2736.1.b.b 8 19.b odd 2 1 CM
2736.1.b.b 8 57.d even 2 1 inner
2736.1.b.b 8 76.d even 2 1 inner
2736.1.b.b 8 228.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+4T52+1 T_{5}^{4} + 4T_{5}^{2} + 1 acting on S1new(2736,[χ])S_{1}^{\mathrm{new}}(2736, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+4T2+1)2 (T^{4} + 4 T^{2} + 1)^{2} Copy content Toggle raw display
77 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
1111 (T44T2+1)2 (T^{4} - 4 T^{2} + 1)^{2} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T4+4T2+1)2 (T^{4} + 4 T^{2} + 1)^{2} Copy content Toggle raw display
1919 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
2323 (T22)4 (T^{2} - 2)^{4} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T2+3)4 (T^{2} + 3)^{4} Copy content Toggle raw display
4747 (T44T2+1)2 (T^{4} - 4 T^{2} + 1)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T23)4 (T^{2} - 3)^{4} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 (T22)4 (T^{2} - 2)^{4} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less