L(s) = 1 | − 0.517i·5-s − i·7-s + 0.517·11-s − 1.93i·17-s + i·19-s − 1.41·23-s + 0.732·25-s − 0.517·35-s − 1.73i·43-s − 1.93·47-s − 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s + 1.41·83-s + ⋯ |
L(s) = 1 | − 0.517i·5-s − i·7-s + 0.517·11-s − 1.93i·17-s + i·19-s − 1.41·23-s + 0.732·25-s − 0.517·35-s − 1.73i·43-s − 1.93·47-s − 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s + 1.41·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0917 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0917 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.142358004\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.142358004\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + 0.517iT - T^{2} \) |
| 7 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 - 0.517T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 1.93iT - T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 1.73iT - T^{2} \) |
| 47 | \( 1 + 1.93T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.73T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.802613125151395881222116633159, −8.077710667137686646634459608322, −7.27117413827582439974439281521, −6.71218471243661975243681602585, −5.67482753727372877335976260354, −4.85856662747130656477379688143, −4.08997092199353151072725277805, −3.29171146360642447334460619284, −1.96585402786050716035646503160, −0.75260675886657805150076381824,
1.63991485043357070971683986163, 2.57390535570138044752414877232, 3.53268164377710775151331755105, 4.42295179270097513805726384324, 5.42986620025226661133113198453, 6.30821089635726170146844717923, 6.61331032585000722876570364095, 7.84635489511807641632945970701, 8.420941329034339995430898391752, 9.117420526265624875008469758275