L(s) = 1 | − 0.517i·5-s − i·7-s + 0.517·11-s − 1.93i·17-s + i·19-s − 1.41·23-s + 0.732·25-s − 0.517·35-s − 1.73i·43-s − 1.93·47-s − 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s + 1.41·83-s + ⋯ |
L(s) = 1 | − 0.517i·5-s − i·7-s + 0.517·11-s − 1.93i·17-s + i·19-s − 1.41·23-s + 0.732·25-s − 0.517·35-s − 1.73i·43-s − 1.93·47-s − 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s + 1.41·83-s + ⋯ |
Λ(s)=(=(2736s/2ΓC(s)L(s)(0.0917+0.995i)Λ(1−s)
Λ(s)=(=(2736s/2ΓC(s)L(s)(0.0917+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
2736
= 24⋅32⋅19
|
Sign: |
0.0917+0.995i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2736(2735,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2736, ( :0), 0.0917+0.995i)
|
Particular Values
L(21) |
≈ |
1.142358004 |
L(21) |
≈ |
1.142358004 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1−iT |
good | 5 | 1+0.517iT−T2 |
| 7 | 1+iT−T2 |
| 11 | 1−0.517T+T2 |
| 13 | 1−T2 |
| 17 | 1+1.93iT−T2 |
| 23 | 1+1.41T+T2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1+T2 |
| 43 | 1+1.73iT−T2 |
| 47 | 1+1.93T+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−1.73T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1+T2 |
| 83 | 1−1.41T+T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.802613125151395881222116633159, −8.077710667137686646634459608322, −7.27117413827582439974439281521, −6.71218471243661975243681602585, −5.67482753727372877335976260354, −4.85856662747130656477379688143, −4.08997092199353151072725277805, −3.29171146360642447334460619284, −1.96585402786050716035646503160, −0.75260675886657805150076381824,
1.63991485043357070971683986163, 2.57390535570138044752414877232, 3.53268164377710775151331755105, 4.42295179270097513805726384324, 5.42986620025226661133113198453, 6.30821089635726170146844717923, 6.61331032585000722876570364095, 7.84635489511807641632945970701, 8.420941329034339995430898391752, 9.117420526265624875008469758275