L(s) = 1 | − 0.517i·5-s + i·7-s − 0.517·11-s − 1.93i·17-s − i·19-s + 1.41·23-s + 0.732·25-s + 0.517·35-s + 1.73i·43-s + 1.93·47-s + 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s − 1.41·83-s + ⋯ |
L(s) = 1 | − 0.517i·5-s + i·7-s − 0.517·11-s − 1.93i·17-s − i·19-s + 1.41·23-s + 0.732·25-s + 0.517·35-s + 1.73i·43-s + 1.93·47-s + 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s − 1.41·83-s + ⋯ |
Λ(s)=(=(2736s/2ΓC(s)L(s)(0.908+0.418i)Λ(1−s)
Λ(s)=(=(2736s/2ΓC(s)L(s)(0.908+0.418i)Λ(1−s)
Degree: |
2 |
Conductor: |
2736
= 24⋅32⋅19
|
Sign: |
0.908+0.418i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2736(2735,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2736, ( :0), 0.908+0.418i)
|
Particular Values
L(21) |
≈ |
1.210664759 |
L(21) |
≈ |
1.210664759 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1+iT |
good | 5 | 1+0.517iT−T2 |
| 7 | 1−iT−T2 |
| 11 | 1+0.517T+T2 |
| 13 | 1−T2 |
| 17 | 1+1.93iT−T2 |
| 23 | 1−1.41T+T2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1+T2 |
| 43 | 1−1.73iT−T2 |
| 47 | 1−1.93T+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−1.73T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1+T2 |
| 83 | 1+1.41T+T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.096008575240992245813090231235, −8.375645413996755458343302692788, −7.34642154618976860925397957617, −6.82796769403867502820459119278, −5.64369388777373917597613248924, −5.09970589649366700071149069247, −4.48916422537915226915426061117, −2.92106252210829945321225105600, −2.57234638897194336547209514563, −0.934542519872865180945627982580,
1.21864831734537424724549754887, 2.45359674966082818640467731377, 3.59128030475921440451526726166, 4.09544319091030015399388171934, 5.24863933978751934757777936689, 6.02868542648641723130892709157, 6.93441487770941152627669203106, 7.41585331419030246464632446096, 8.309961467227838114646638501445, 8.914225315626013043074031947496