L(s) = 1 | − 0.517i·5-s + i·7-s − 0.517·11-s − 1.93i·17-s − i·19-s + 1.41·23-s + 0.732·25-s + 0.517·35-s + 1.73i·43-s + 1.93·47-s + 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s − 1.41·83-s + ⋯ |
L(s) = 1 | − 0.517i·5-s + i·7-s − 0.517·11-s − 1.93i·17-s − i·19-s + 1.41·23-s + 0.732·25-s + 0.517·35-s + 1.73i·43-s + 1.93·47-s + 0.267i·55-s + 1.73·61-s − 73-s − 0.517i·77-s − 1.41·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.210664759\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.210664759\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 0.517iT - T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + 0.517T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 1.93iT - T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.73iT - T^{2} \) |
| 47 | \( 1 - 1.93T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.73T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.096008575240992245813090231235, −8.375645413996755458343302692788, −7.34642154618976860925397957617, −6.82796769403867502820459119278, −5.64369388777373917597613248924, −5.09970589649366700071149069247, −4.48916422537915226915426061117, −2.92106252210829945321225105600, −2.57234638897194336547209514563, −0.934542519872865180945627982580,
1.21864831734537424724549754887, 2.45359674966082818640467731377, 3.59128030475921440451526726166, 4.09544319091030015399388171934, 5.24863933978751934757777936689, 6.02868542648641723130892709157, 6.93441487770941152627669203106, 7.41585331419030246464632446096, 8.309961467227838114646638501445, 8.914225315626013043074031947496