L(s) = 1 | − 2·5-s + 2·7-s − 10·11-s − 4·13-s + 8·17-s + 3·19-s − 4·23-s − 4·25-s + 6·29-s + 18·31-s − 4·35-s + 12·37-s + 14·41-s + 10·43-s − 8·47-s + 6·49-s + 10·53-s + 20·55-s + 8·59-s + 8·65-s + 16·73-s − 20·77-s + 22·79-s − 18·83-s − 16·85-s + 6·89-s − 8·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.755·7-s − 3.01·11-s − 1.10·13-s + 1.94·17-s + 0.688·19-s − 0.834·23-s − 4/5·25-s + 1.11·29-s + 3.23·31-s − 0.676·35-s + 1.97·37-s + 2.18·41-s + 1.52·43-s − 1.16·47-s + 6/7·49-s + 1.37·53-s + 2.69·55-s + 1.04·59-s + 0.992·65-s + 1.87·73-s − 2.27·77-s + 2.47·79-s − 1.97·83-s − 1.73·85-s + 0.635·89-s − 0.838·91-s + ⋯ |
Λ(s)=(=((212⋅36⋅193)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((212⋅36⋅193)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅36⋅193
|
Sign: |
1
|
Analytic conductor: |
10427.4 |
Root analytic conductor: |
4.67408 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 212⋅36⋅193, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.506517971 |
L(21) |
≈ |
3.506517971 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 19 | C1 | (1−T)3 |
good | 5 | S4×C2 | 1+2T+8T2+22T3+8pT4+2p2T5+p3T6 |
| 7 | S4×C2 | 1−2T−2T2+4pT3−2pT4−2p2T5+p3T6 |
| 11 | S4×C2 | 1+10T+58T2+222T3+58pT4+10p2T5+p3T6 |
| 13 | S4×C2 | 1+4T−5T2−56T3−5pT4+4p2T5+p3T6 |
| 17 | S4×C2 | 1−8T+36T2−120T3+36pT4−8p2T5+p3T6 |
| 23 | S4×C2 | 1+4T+41T2+200T3+41pT4+4p2T5+p3T6 |
| 29 | S4×C2 | 1−6T+59T2−244T3+59pT4−6p2T5+p3T6 |
| 31 | C2 | (1−6T+pT2)3 |
| 37 | C2 | (1−4T+pT2)3 |
| 41 | S4×C2 | 1−14T+139T2−1116T3+139pT4−14p2T5+p3T6 |
| 43 | S4×C2 | 1−10T+138T2−856T3+138pT4−10p2T5+p3T6 |
| 47 | S4×C2 | 1+8T+102T2+432T3+102pT4+8p2T5+p3T6 |
| 53 | S4×C2 | 1−10T+67T2−396T3+67pT4−10p2T5+p3T6 |
| 59 | S4×C2 | 1−8T+T2+336T3+pT4−8p2T5+p3T6 |
| 61 | S4×C2 | 1+116T2−190T3+116pT4+p3T6 |
| 67 | S4×C2 | 1+41T2−256T3+41pT4+p3T6 |
| 71 | S4×C2 | 1+53T2+256T3+53pT4+p3T6 |
| 73 | S4×C2 | 1−16T+224T2−2214T3+224pT4−16p2T5+p3T6 |
| 79 | S4×C2 | 1−22T+349T2−3412T3+349pT4−22p2T5+p3T6 |
| 83 | S4×C2 | 1+18T+317T2+2932T3+317pT4+18p2T5+p3T6 |
| 89 | S4×C2 | 1−6T+239T2−1028T3+239pT4−6p2T5+p3T6 |
| 97 | S4×C2 | 1−22T+319T2−3220T3+319pT4−22p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80216187180713824272078678956, −7.61943206764324692940821498562, −7.50803358849870518383037130127, −7.43981927524138002216424981819, −6.84365789378159225727909678767, −6.44635628110503708359749117748, −6.35165498121577252597861329262, −5.84287751626937806874084055094, −5.63866573038222832661748356988, −5.45592564043770390255880050309, −5.28361910548045623745760877140, −4.81988911569034139102130886755, −4.73173280935912438099276100532, −4.27174954043337402186507663683, −4.24131640754213853412986322404, −3.90028888095897396760909962970, −3.22189354944770394763854600378, −3.03066104773356851706765226911, −2.86735129804313463807383461774, −2.49590539940599076898388139371, −2.11307061209173312415203079123, −2.09888302162659560389018976184, −0.946421504137900704437002137957, −0.70946273429085315645708596144, −0.66389323873369476547373894364,
0.66389323873369476547373894364, 0.70946273429085315645708596144, 0.946421504137900704437002137957, 2.09888302162659560389018976184, 2.11307061209173312415203079123, 2.49590539940599076898388139371, 2.86735129804313463807383461774, 3.03066104773356851706765226911, 3.22189354944770394763854600378, 3.90028888095897396760909962970, 4.24131640754213853412986322404, 4.27174954043337402186507663683, 4.73173280935912438099276100532, 4.81988911569034139102130886755, 5.28361910548045623745760877140, 5.45592564043770390255880050309, 5.63866573038222832661748356988, 5.84287751626937806874084055094, 6.35165498121577252597861329262, 6.44635628110503708359749117748, 6.84365789378159225727909678767, 7.43981927524138002216424981819, 7.50803358849870518383037130127, 7.61943206764324692940821498562, 7.80216187180713824272078678956