Properties

Label 2736.2.a.bc
Level $2736$
Weight $2$
Character orbit 2736.a
Self dual yes
Analytic conductor $21.847$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(1,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.892.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 8x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1368)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + ( - \beta_{2} - \beta_1 + 1) q^{7} + ( - \beta_1 - 3) q^{11} + ( - 2 \beta_{2} + 2 \beta_1 - 2) q^{13} + (2 \beta_{2} - \beta_1 + 3) q^{17} + q^{19} + (2 \beta_1 - 2) q^{23}+ \cdots + (4 \beta_1 + 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{5} + 2 q^{7} - 10 q^{11} - 4 q^{13} + 8 q^{17} + 3 q^{19} - 4 q^{23} + 3 q^{25} + 6 q^{29} + 18 q^{31} - 24 q^{35} + 12 q^{37} + 14 q^{41} + 10 q^{43} - 8 q^{47} + 29 q^{49} + 10 q^{53} - 10 q^{55}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 8x + 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.91729
1.31955
2.59774
0 0 0 −3.91729 0 4.32401 0 0 0
1.2 0 0 0 0.319551 0 2.61968 0 0 0
1.3 0 0 0 1.59774 0 −4.94370 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.a.bc 3
3.b odd 2 1 2736.2.a.be 3
4.b odd 2 1 1368.2.a.m 3
12.b even 2 1 1368.2.a.o yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.2.a.m 3 4.b odd 2 1
1368.2.a.o yes 3 12.b even 2 1
2736.2.a.bc 3 1.a even 1 1 trivial
2736.2.a.be 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2736))\):

\( T_{5}^{3} + 2T_{5}^{2} - 7T_{5} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 2T_{7}^{2} - 23T_{7} + 56 \) Copy content Toggle raw display
\( T_{11}^{3} + 10T_{11}^{2} + 25T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{3} + 4T_{13}^{2} - 44T_{13} - 160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$11$ \( T^{3} + 10 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$17$ \( T^{3} - 8 T^{2} + \cdots + 152 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$31$ \( (T - 6)^{3} \) Copy content Toggle raw display
$37$ \( (T - 4)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 14 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$43$ \( T^{3} - 10 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$53$ \( T^{3} - 10 T^{2} + \cdots + 664 \) Copy content Toggle raw display
$59$ \( T^{3} - 8 T^{2} + \cdots + 1280 \) Copy content Toggle raw display
$61$ \( T^{3} - 67T - 190 \) Copy content Toggle raw display
$67$ \( T^{3} - 160T - 256 \) Copy content Toggle raw display
$71$ \( T^{3} - 160T + 256 \) Copy content Toggle raw display
$73$ \( T^{3} - 16 T^{2} + \cdots + 122 \) Copy content Toggle raw display
$79$ \( T^{3} - 22 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$83$ \( T^{3} + 18 T^{2} + \cdots - 56 \) Copy content Toggle raw display
$89$ \( T^{3} - 6 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$97$ \( T^{3} - 22 T^{2} + \cdots + 1048 \) Copy content Toggle raw display
show more
show less