L(s) = 1 | + (0.0756 − 0.0549i)2-s + (−0.453 − 1.39i)3-s + (−0.615 + 1.89i)4-s + (−0.110 − 0.0806i)6-s + (−1.39 + 4.30i)7-s + (0.115 + 0.354i)8-s + (0.686 − 0.498i)9-s + (−2.39 + 2.29i)11-s + 2.92·12-s + (−0.924 + 0.671i)13-s + (0.130 + 0.402i)14-s + (−3.19 − 2.32i)16-s + (2.72 + 1.98i)17-s + (0.0245 − 0.0754i)18-s + (1.88 + 5.78i)19-s + ⋯ |
L(s) = 1 | + (0.0534 − 0.0388i)2-s + (−0.261 − 0.805i)3-s + (−0.307 + 0.946i)4-s + (−0.0452 − 0.0329i)6-s + (−0.528 + 1.62i)7-s + (0.0407 + 0.125i)8-s + (0.228 − 0.166i)9-s + (−0.723 + 0.690i)11-s + 0.843·12-s + (−0.256 + 0.186i)13-s + (0.0349 + 0.107i)14-s + (−0.798 − 0.580i)16-s + (0.661 + 0.480i)17-s + (0.00578 − 0.0177i)18-s + (0.431 + 1.32i)19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(0.202−0.979i)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)(0.202−0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
0.202−0.979i
|
Analytic conductor: |
2.19588 |
Root analytic conductor: |
1.48185 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :1/2), 0.202−0.979i)
|
Particular Values
L(1) |
≈ |
0.716880+0.583937i |
L(21) |
≈ |
0.716880+0.583937i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+(2.39−2.29i)T |
good | 2 | 1+(−0.0756+0.0549i)T+(0.618−1.90i)T2 |
| 3 | 1+(0.453+1.39i)T+(−2.42+1.76i)T2 |
| 7 | 1+(1.39−4.30i)T+(−5.66−4.11i)T2 |
| 13 | 1+(0.924−0.671i)T+(4.01−12.3i)T2 |
| 17 | 1+(−2.72−1.98i)T+(5.25+16.1i)T2 |
| 19 | 1+(−1.88−5.78i)T+(−15.3+11.1i)T2 |
| 23 | 1−5.45T+23T2 |
| 29 | 1+(−1.02+3.15i)T+(−23.4−17.0i)T2 |
| 31 | 1+(1.44−1.05i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.460−1.41i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.539+1.66i)T+(−33.1+24.0i)T2 |
| 43 | 1−0.263T+43T2 |
| 47 | 1+(2.13+6.58i)T+(−38.0+27.6i)T2 |
| 53 | 1+(1.16−0.846i)T+(16.3−50.4i)T2 |
| 59 | 1+(2.18−6.72i)T+(−47.7−34.6i)T2 |
| 61 | 1+(2.02+1.47i)T+(18.8+58.0i)T2 |
| 67 | 1−0.516T+67T2 |
| 71 | 1+(−8.68−6.30i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.75+5.40i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−9.14+6.64i)T+(24.4−75.1i)T2 |
| 83 | 1+(−3.62−2.63i)T+(25.6+78.9i)T2 |
| 89 | 1−13.2T+89T2 |
| 97 | 1+(2.71−1.97i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.36736989287611428570893347885, −11.69185419288344563001557455022, −10.04564420835930541621027840203, −9.149061242067345826813823612364, −8.118963311586024136903348041332, −7.30450027976084040747263480837, −6.16412048609059406509889259759, −5.08270074147069357330463016892, −3.43810147092618161030688432072, −2.16840713625123104294375783936,
0.73803624662342092181972885555, 3.31695983544725952882665837666, 4.64083677736015246372441103360, 5.27322499330269977424667107120, 6.71029730432573454161725978822, 7.62543017817165213665592676227, 9.266875358281918544838120324592, 9.901343338118355668582599035783, 10.77916486635183925983848003921, 11.04628800916005755215629417291