L(s) = 1 | + (0.0756 − 0.0549i)2-s + (−0.453 − 1.39i)3-s + (−0.615 + 1.89i)4-s + (−0.110 − 0.0806i)6-s + (−1.39 + 4.30i)7-s + (0.115 + 0.354i)8-s + (0.686 − 0.498i)9-s + (−2.39 + 2.29i)11-s + 2.92·12-s + (−0.924 + 0.671i)13-s + (0.130 + 0.402i)14-s + (−3.19 − 2.32i)16-s + (2.72 + 1.98i)17-s + (0.0245 − 0.0754i)18-s + (1.88 + 5.78i)19-s + ⋯ |
L(s) = 1 | + (0.0534 − 0.0388i)2-s + (−0.261 − 0.805i)3-s + (−0.307 + 0.946i)4-s + (−0.0452 − 0.0329i)6-s + (−0.528 + 1.62i)7-s + (0.0407 + 0.125i)8-s + (0.228 − 0.166i)9-s + (−0.723 + 0.690i)11-s + 0.843·12-s + (−0.256 + 0.186i)13-s + (0.0349 + 0.107i)14-s + (−0.798 − 0.580i)16-s + (0.661 + 0.480i)17-s + (0.00578 − 0.0177i)18-s + (0.431 + 1.32i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.202 - 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.202 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.716880 + 0.583937i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.716880 + 0.583937i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (2.39 - 2.29i)T \) |
good | 2 | \( 1 + (-0.0756 + 0.0549i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (0.453 + 1.39i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (1.39 - 4.30i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (0.924 - 0.671i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.72 - 1.98i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.88 - 5.78i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 5.45T + 23T^{2} \) |
| 29 | \( 1 + (-1.02 + 3.15i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.44 - 1.05i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.460 - 1.41i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.539 + 1.66i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 0.263T + 43T^{2} \) |
| 47 | \( 1 + (2.13 + 6.58i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.16 - 0.846i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.18 - 6.72i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.02 + 1.47i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 0.516T + 67T^{2} \) |
| 71 | \( 1 + (-8.68 - 6.30i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.75 + 5.40i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-9.14 + 6.64i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.62 - 2.63i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + (2.71 - 1.97i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36736989287611428570893347885, −11.69185419288344563001557455022, −10.04564420835930541621027840203, −9.149061242067345826813823612364, −8.118963311586024136903348041332, −7.30450027976084040747263480837, −6.16412048609059406509889259759, −5.08270074147069357330463016892, −3.43810147092618161030688432072, −2.16840713625123104294375783936,
0.73803624662342092181972885555, 3.31695983544725952882665837666, 4.64083677736015246372441103360, 5.27322499330269977424667107120, 6.71029730432573454161725978822, 7.62543017817165213665592676227, 9.266875358281918544838120324592, 9.901343338118355668582599035783, 10.77916486635183925983848003921, 11.04628800916005755215629417291