Properties

Label 275.2.h.b.201.1
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(0.453245 + 1.39494i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.b.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0756511 - 0.0549637i) q^{2} +(-0.453245 - 1.39494i) q^{3} +(-0.615332 + 1.89380i) q^{4} +(-0.110960 - 0.0806171i) q^{6} +(-1.39815 + 4.30308i) q^{7} +(0.115332 + 0.354955i) q^{8} +(0.686611 - 0.498852i) q^{9} +(-2.39815 + 2.29104i) q^{11} +2.92064 q^{12} +(-0.924349 + 0.671579i) q^{13} +(0.130741 + 0.402380i) q^{14} +(-3.19369 - 2.32035i) q^{16} +(2.72899 + 1.98273i) q^{17} +(0.0245241 - 0.0754774i) q^{18} +(1.88030 + 5.78696i) q^{19} +6.63626 q^{21} +(-0.0554990 + 0.305131i) q^{22} +5.45258 q^{23} +(0.442869 - 0.321763i) q^{24} +(-0.0330155 + 0.101611i) q^{26} +(-4.56691 - 3.31805i) q^{27} +(-7.28883 - 5.29564i) q^{28} +(1.02619 - 3.15830i) q^{29} +(-1.44887 + 1.05267i) q^{31} -1.11558 q^{32} +(4.28282 + 2.30689i) q^{33} +0.315430 q^{34} +(0.522231 + 1.60726i) q^{36} +(-0.460067 + 1.41594i) q^{37} +(0.460319 + 0.334441i) q^{38} +(1.35577 + 0.985026i) q^{39} +(-0.539933 - 1.66174i) q^{41} +(0.502041 - 0.364754i) q^{42} +0.263041 q^{43} +(-2.86310 - 5.95137i) q^{44} +(0.412494 - 0.299694i) q^{46} +(-2.13986 - 6.58580i) q^{47} +(-1.78924 + 5.50670i) q^{48} +(-10.8985 - 7.91824i) q^{49} +(1.52890 - 4.70546i) q^{51} +(-0.703052 - 2.16377i) q^{52} +(-1.16479 + 0.846269i) q^{53} -0.527864 q^{54} -1.68865 q^{56} +(7.22025 - 5.24582i) q^{57} +(-0.0959593 - 0.295332i) q^{58} +(-2.18416 + 6.72216i) q^{59} +(-2.02452 - 1.47090i) q^{61} +(-0.0517503 + 0.159271i) q^{62} +(1.18661 + 3.65201i) q^{63} +(6.30297 - 4.57938i) q^{64} +(0.450796 - 0.0608810i) q^{66} +0.516598 q^{67} +(-5.43413 + 3.94812i) q^{68} +(-2.47136 - 7.60605i) q^{69} +(8.68098 + 6.30710i) q^{71} +(0.256258 + 0.186183i) q^{72} +(1.75560 - 5.40317i) q^{73} +(0.0430208 + 0.132404i) q^{74} -12.1163 q^{76} +(-6.50552 - 13.5227i) q^{77} +0.156706 q^{78} +(9.14460 - 6.64394i) q^{79} +(-1.77179 + 5.45300i) q^{81} +(-0.132182 - 0.0960360i) q^{82} +(3.62511 + 2.63380i) q^{83} +(-4.08350 + 12.5677i) q^{84} +(0.0198994 - 0.0144577i) q^{86} -4.87077 q^{87} +(-1.08980 - 0.587008i) q^{88} +13.2676 q^{89} +(-1.59747 - 4.91652i) q^{91} +(-3.35515 + 10.3261i) q^{92} +(2.12511 + 1.54398i) q^{93} +(-0.523863 - 0.380608i) q^{94} +(0.505633 + 1.55618i) q^{96} +(-2.71551 + 1.97293i) q^{97} -1.25970 q^{98} +(-0.503711 + 2.76938i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 6 q^{4} + 13 q^{6} + 3 q^{7} + 2 q^{8} - 5 q^{9} - 5 q^{11} + 28 q^{12} - 4 q^{13} + 16 q^{14} - 20 q^{16} - q^{17} - 14 q^{18} - q^{19} - 12 q^{21} - 33 q^{22} + 18 q^{23} + 25 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0756511 0.0549637i 0.0534934 0.0388652i −0.560717 0.828007i \(-0.689475\pi\)
0.614211 + 0.789142i \(0.289475\pi\)
\(3\) −0.453245 1.39494i −0.261681 0.805372i −0.992439 0.122735i \(-0.960833\pi\)
0.730758 0.682636i \(-0.239167\pi\)
\(4\) −0.615332 + 1.89380i −0.307666 + 0.946898i
\(5\) 0 0
\(6\) −0.110960 0.0806171i −0.0452992 0.0329118i
\(7\) −1.39815 + 4.30308i −0.528453 + 1.62641i 0.228932 + 0.973442i \(0.426477\pi\)
−0.757385 + 0.652968i \(0.773523\pi\)
\(8\) 0.115332 + 0.354955i 0.0407760 + 0.125496i
\(9\) 0.686611 0.498852i 0.228870 0.166284i
\(10\) 0 0
\(11\) −2.39815 + 2.29104i −0.723071 + 0.690774i
\(12\) 2.92064 0.843116
\(13\) −0.924349 + 0.671579i −0.256368 + 0.186262i −0.708544 0.705666i \(-0.750648\pi\)
0.452176 + 0.891929i \(0.350648\pi\)
\(14\) 0.130741 + 0.402380i 0.0349421 + 0.107541i
\(15\) 0 0
\(16\) −3.19369 2.32035i −0.798421 0.580087i
\(17\) 2.72899 + 1.98273i 0.661878 + 0.480883i 0.867297 0.497792i \(-0.165856\pi\)
−0.205418 + 0.978674i \(0.565856\pi\)
\(18\) 0.0245241 0.0754774i 0.00578038 0.0177902i
\(19\) 1.88030 + 5.78696i 0.431369 + 1.32762i 0.896762 + 0.442514i \(0.145913\pi\)
−0.465392 + 0.885105i \(0.654087\pi\)
\(20\) 0 0
\(21\) 6.63626 1.44815
\(22\) −0.0554990 + 0.305131i −0.0118324 + 0.0650542i
\(23\) 5.45258 1.13694 0.568471 0.822703i \(-0.307535\pi\)
0.568471 + 0.822703i \(0.307535\pi\)
\(24\) 0.442869 0.321763i 0.0904003 0.0656797i
\(25\) 0 0
\(26\) −0.0330155 + 0.101611i −0.00647488 + 0.0199276i
\(27\) −4.56691 3.31805i −0.878902 0.638559i
\(28\) −7.28883 5.29564i −1.37746 1.00078i
\(29\) 1.02619 3.15830i 0.190559 0.586482i −0.809440 0.587202i \(-0.800229\pi\)
1.00000 0.000720503i \(0.000229343\pi\)
\(30\) 0 0
\(31\) −1.44887 + 1.05267i −0.260225 + 0.189065i −0.710246 0.703953i \(-0.751416\pi\)
0.450021 + 0.893018i \(0.351416\pi\)
\(32\) −1.11558 −0.197209
\(33\) 4.28282 + 2.30689i 0.745544 + 0.401578i
\(34\) 0.315430 0.0540957
\(35\) 0 0
\(36\) 0.522231 + 1.60726i 0.0870385 + 0.267877i
\(37\) −0.460067 + 1.41594i −0.0756345 + 0.232779i −0.981725 0.190305i \(-0.939052\pi\)
0.906091 + 0.423084i \(0.139052\pi\)
\(38\) 0.460319 + 0.334441i 0.0746736 + 0.0542536i
\(39\) 1.35577 + 0.985026i 0.217097 + 0.157730i
\(40\) 0 0
\(41\) −0.539933 1.66174i −0.0843234 0.259521i 0.900001 0.435888i \(-0.143566\pi\)
−0.984325 + 0.176367i \(0.943566\pi\)
\(42\) 0.502041 0.364754i 0.0774665 0.0562827i
\(43\) 0.263041 0.0401134 0.0200567 0.999799i \(-0.493615\pi\)
0.0200567 + 0.999799i \(0.493615\pi\)
\(44\) −2.86310 5.95137i −0.431628 0.897202i
\(45\) 0 0
\(46\) 0.412494 0.299694i 0.0608189 0.0441875i
\(47\) −2.13986 6.58580i −0.312130 0.960638i −0.976920 0.213607i \(-0.931479\pi\)
0.664790 0.747031i \(-0.268521\pi\)
\(48\) −1.78924 + 5.50670i −0.258254 + 0.794824i
\(49\) −10.8985 7.91824i −1.55693 1.13118i
\(50\) 0 0
\(51\) 1.52890 4.70546i 0.214088 0.658896i
\(52\) −0.703052 2.16377i −0.0974958 0.300061i
\(53\) −1.16479 + 0.846269i −0.159996 + 0.116244i −0.664903 0.746930i \(-0.731527\pi\)
0.504907 + 0.863174i \(0.331527\pi\)
\(54\) −0.527864 −0.0718332
\(55\) 0 0
\(56\) −1.68865 −0.225656
\(57\) 7.22025 5.24582i 0.956345 0.694826i
\(58\) −0.0959593 0.295332i −0.0126001 0.0387790i
\(59\) −2.18416 + 6.72216i −0.284354 + 0.875150i 0.702238 + 0.711942i \(0.252184\pi\)
−0.986592 + 0.163208i \(0.947816\pi\)
\(60\) 0 0
\(61\) −2.02452 1.47090i −0.259214 0.188330i 0.450587 0.892733i \(-0.351215\pi\)
−0.709800 + 0.704403i \(0.751215\pi\)
\(62\) −0.0517503 + 0.159271i −0.00657229 + 0.0202274i
\(63\) 1.18661 + 3.65201i 0.149499 + 0.460110i
\(64\) 6.30297 4.57938i 0.787872 0.572422i
\(65\) 0 0
\(66\) 0.450796 0.0608810i 0.0554891 0.00749394i
\(67\) 0.516598 0.0631124 0.0315562 0.999502i \(-0.489954\pi\)
0.0315562 + 0.999502i \(0.489954\pi\)
\(68\) −5.43413 + 3.94812i −0.658984 + 0.478780i
\(69\) −2.47136 7.60605i −0.297516 0.915661i
\(70\) 0 0
\(71\) 8.68098 + 6.30710i 1.03024 + 0.748515i 0.968357 0.249568i \(-0.0802887\pi\)
0.0618853 + 0.998083i \(0.480289\pi\)
\(72\) 0.256258 + 0.186183i 0.0302003 + 0.0219418i
\(73\) 1.75560 5.40317i 0.205477 0.632393i −0.794216 0.607635i \(-0.792118\pi\)
0.999693 0.0247584i \(-0.00788163\pi\)
\(74\) 0.0430208 + 0.132404i 0.00500106 + 0.0153917i
\(75\) 0 0
\(76\) −12.1163 −1.38984
\(77\) −6.50552 13.5227i −0.741373 1.54105i
\(78\) 0.156706 0.0177435
\(79\) 9.14460 6.64394i 1.02885 0.747502i 0.0607700 0.998152i \(-0.480644\pi\)
0.968078 + 0.250650i \(0.0806444\pi\)
\(80\) 0 0
\(81\) −1.77179 + 5.45300i −0.196865 + 0.605888i
\(82\) −0.132182 0.0960360i −0.0145971 0.0106054i
\(83\) 3.62511 + 2.63380i 0.397907 + 0.289097i 0.768688 0.639624i \(-0.220910\pi\)
−0.370781 + 0.928720i \(0.620910\pi\)
\(84\) −4.08350 + 12.5677i −0.445547 + 1.37125i
\(85\) 0 0
\(86\) 0.0198994 0.0144577i 0.00214580 0.00155902i
\(87\) −4.87077 −0.522202
\(88\) −1.08980 0.587008i −0.116173 0.0625752i
\(89\) 13.2676 1.40637 0.703183 0.711009i \(-0.251762\pi\)
0.703183 + 0.711009i \(0.251762\pi\)
\(90\) 0 0
\(91\) −1.59747 4.91652i −0.167461 0.515391i
\(92\) −3.35515 + 10.3261i −0.349798 + 1.07657i
\(93\) 2.12511 + 1.54398i 0.220363 + 0.160103i
\(94\) −0.523863 0.380608i −0.0540323 0.0392568i
\(95\) 0 0
\(96\) 0.505633 + 1.55618i 0.0516060 + 0.158827i
\(97\) −2.71551 + 1.97293i −0.275718 + 0.200321i −0.717048 0.697024i \(-0.754507\pi\)
0.441330 + 0.897345i \(0.354507\pi\)
\(98\) −1.25970 −0.127249
\(99\) −0.503711 + 2.76938i −0.0506248 + 0.278333i
\(100\) 0 0
\(101\) 7.55216 5.48696i 0.751468 0.545973i −0.144814 0.989459i \(-0.546258\pi\)
0.896282 + 0.443486i \(0.146258\pi\)
\(102\) −0.142967 0.440007i −0.0141558 0.0435672i
\(103\) 4.30027 13.2349i 0.423718 1.30407i −0.480498 0.876996i \(-0.659544\pi\)
0.904216 0.427075i \(-0.140456\pi\)
\(104\) −0.344987 0.250648i −0.0338288 0.0245781i
\(105\) 0 0
\(106\) −0.0416035 + 0.128042i −0.00404089 + 0.0124366i
\(107\) 5.18787 + 15.9666i 0.501531 + 1.54355i 0.806526 + 0.591198i \(0.201345\pi\)
−0.304996 + 0.952354i \(0.598655\pi\)
\(108\) 9.09388 6.60709i 0.875059 0.635768i
\(109\) −3.65293 −0.349888 −0.174944 0.984578i \(-0.555974\pi\)
−0.174944 + 0.984578i \(0.555974\pi\)
\(110\) 0 0
\(111\) 2.18368 0.207266
\(112\) 14.4499 10.4985i 1.36539 0.992012i
\(113\) 3.67802 + 11.3198i 0.345999 + 1.06488i 0.961047 + 0.276386i \(0.0891369\pi\)
−0.615047 + 0.788490i \(0.710863\pi\)
\(114\) 0.257890 0.793704i 0.0241536 0.0743372i
\(115\) 0 0
\(116\) 5.34973 + 3.88681i 0.496710 + 0.360881i
\(117\) −0.299650 + 0.922227i −0.0277026 + 0.0852599i
\(118\) 0.204241 + 0.628588i 0.0188019 + 0.0578662i
\(119\) −12.3474 + 8.97091i −1.13188 + 0.822362i
\(120\) 0 0
\(121\) 0.502293 10.9885i 0.0456630 0.998957i
\(122\) −0.234004 −0.0211857
\(123\) −2.07332 + 1.50635i −0.186945 + 0.135823i
\(124\) −1.10200 3.39161i −0.0989626 0.304576i
\(125\) 0 0
\(126\) 0.290497 + 0.211058i 0.0258795 + 0.0188026i
\(127\) 15.9883 + 11.6162i 1.41873 + 1.03077i 0.991979 + 0.126404i \(0.0403435\pi\)
0.426756 + 0.904367i \(0.359656\pi\)
\(128\) 0.914596 2.81484i 0.0808397 0.248799i
\(129\) −0.119222 0.366928i −0.0104969 0.0323062i
\(130\) 0 0
\(131\) −1.93479 −0.169043 −0.0845215 0.996422i \(-0.526936\pi\)
−0.0845215 + 0.996422i \(0.526936\pi\)
\(132\) −7.00414 + 6.69129i −0.609632 + 0.582402i
\(133\) −27.5307 −2.38721
\(134\) 0.0390812 0.0283941i 0.00337610 0.00245288i
\(135\) 0 0
\(136\) −0.389040 + 1.19734i −0.0333599 + 0.102671i
\(137\) −10.1413 7.36808i −0.866429 0.629498i 0.0631970 0.998001i \(-0.479870\pi\)
−0.929626 + 0.368503i \(0.879870\pi\)
\(138\) −0.605018 0.439571i −0.0515025 0.0374188i
\(139\) −3.47491 + 10.6947i −0.294738 + 0.907111i 0.688571 + 0.725169i \(0.258238\pi\)
−0.983309 + 0.181942i \(0.941762\pi\)
\(140\) 0 0
\(141\) −8.21695 + 5.96996i −0.691992 + 0.502762i
\(142\) 1.00339 0.0842024
\(143\) 0.678120 3.72827i 0.0567072 0.311773i
\(144\) −3.35033 −0.279194
\(145\) 0 0
\(146\) −0.164166 0.505250i −0.0135864 0.0418148i
\(147\) −6.10581 + 18.7917i −0.503599 + 1.54992i
\(148\) −2.39841 1.74255i −0.197148 0.143236i
\(149\) 14.0232 + 10.1885i 1.14883 + 0.834672i 0.988325 0.152363i \(-0.0486884\pi\)
0.160503 + 0.987035i \(0.448688\pi\)
\(150\) 0 0
\(151\) −0.00166997 0.00513965i −0.000135901 0.000418259i 0.950989 0.309226i \(-0.100070\pi\)
−0.951124 + 0.308808i \(0.900070\pi\)
\(152\) −1.83725 + 1.33484i −0.149021 + 0.108270i
\(153\) 2.86285 0.231447
\(154\) −1.23541 0.665437i −0.0995519 0.0536225i
\(155\) 0 0
\(156\) −2.69969 + 1.96144i −0.216148 + 0.157041i
\(157\) −0.171454 0.527682i −0.0136835 0.0421136i 0.943982 0.329998i \(-0.107048\pi\)
−0.957665 + 0.287884i \(0.907048\pi\)
\(158\) 0.326623 1.00524i 0.0259847 0.0799728i
\(159\) 1.70843 + 1.24125i 0.135488 + 0.0984375i
\(160\) 0 0
\(161\) −7.62356 + 23.4629i −0.600820 + 1.84914i
\(162\) 0.165679 + 0.509909i 0.0130170 + 0.0400622i
\(163\) −6.44324 + 4.68129i −0.504673 + 0.366667i −0.810799 0.585324i \(-0.800967\pi\)
0.306126 + 0.951991i \(0.400967\pi\)
\(164\) 3.47924 0.271683
\(165\) 0 0
\(166\) 0.419007 0.0325212
\(167\) 2.77204 2.01400i 0.214507 0.155848i −0.475344 0.879800i \(-0.657676\pi\)
0.689850 + 0.723952i \(0.257676\pi\)
\(168\) 0.765373 + 2.35558i 0.0590498 + 0.181737i
\(169\) −3.61382 + 11.1222i −0.277986 + 0.855553i
\(170\) 0 0
\(171\) 4.17787 + 3.03540i 0.319489 + 0.232123i
\(172\) −0.161858 + 0.498147i −0.0123415 + 0.0379834i
\(173\) −6.35552 19.5603i −0.483201 1.48714i −0.834569 0.550903i \(-0.814283\pi\)
0.351368 0.936237i \(-0.385717\pi\)
\(174\) −0.368479 + 0.267716i −0.0279343 + 0.0202955i
\(175\) 0 0
\(176\) 12.9750 1.75230i 0.978024 0.132084i
\(177\) 10.3670 0.779231
\(178\) 1.00371 0.729238i 0.0752313 0.0546587i
\(179\) −0.792419 2.43882i −0.0592282 0.182286i 0.917065 0.398738i \(-0.130552\pi\)
−0.976293 + 0.216452i \(0.930552\pi\)
\(180\) 0 0
\(181\) −10.8545 7.88624i −0.806807 0.586179i 0.106096 0.994356i \(-0.466165\pi\)
−0.912903 + 0.408177i \(0.866165\pi\)
\(182\) −0.391081 0.284137i −0.0289888 0.0210616i
\(183\) −1.13422 + 3.49078i −0.0838442 + 0.258046i
\(184\) 0.628857 + 1.93542i 0.0463599 + 0.142681i
\(185\) 0 0
\(186\) 0.245630 0.0180104
\(187\) −11.0871 + 1.49733i −0.810766 + 0.109496i
\(188\) 13.7889 1.00566
\(189\) 20.6631 15.0126i 1.50302 1.09201i
\(190\) 0 0
\(191\) 5.62097 17.2996i 0.406719 1.25175i −0.512733 0.858548i \(-0.671367\pi\)
0.919452 0.393203i \(-0.128633\pi\)
\(192\) −9.24477 6.71672i −0.667184 0.484738i
\(193\) 12.6924 + 9.22156i 0.913618 + 0.663782i 0.941927 0.335817i \(-0.109012\pi\)
−0.0283094 + 0.999599i \(0.509012\pi\)
\(194\) −0.0969914 + 0.298509i −0.00696358 + 0.0214317i
\(195\) 0 0
\(196\) 21.7018 15.7672i 1.55013 1.12623i
\(197\) 21.8486 1.55665 0.778325 0.627862i \(-0.216070\pi\)
0.778325 + 0.627862i \(0.216070\pi\)
\(198\) 0.114109 + 0.237192i 0.00810937 + 0.0168565i
\(199\) −4.55200 −0.322683 −0.161341 0.986899i \(-0.551582\pi\)
−0.161341 + 0.986899i \(0.551582\pi\)
\(200\) 0 0
\(201\) −0.234145 0.720625i −0.0165153 0.0508290i
\(202\) 0.269745 0.830190i 0.0189792 0.0584119i
\(203\) 12.1556 + 8.83159i 0.853158 + 0.619856i
\(204\) 7.97040 + 5.79084i 0.558040 + 0.405440i
\(205\) 0 0
\(206\) −0.402118 1.23759i −0.0280169 0.0862271i
\(207\) 3.74380 2.72003i 0.260212 0.189055i
\(208\) 4.51038 0.312738
\(209\) −17.7674 9.57019i −1.22900 0.661984i
\(210\) 0 0
\(211\) −15.3393 + 11.1447i −1.05600 + 0.767230i −0.973345 0.229348i \(-0.926341\pi\)
−0.0826575 + 0.996578i \(0.526341\pi\)
\(212\) −0.885929 2.72661i −0.0608459 0.187264i
\(213\) 4.86345 14.9681i 0.333238 1.02560i
\(214\) 1.27005 + 0.922748i 0.0868191 + 0.0630778i
\(215\) 0 0
\(216\) 0.651050 2.00372i 0.0442983 0.136336i
\(217\) −2.50396 7.70641i −0.169980 0.523145i
\(218\) −0.276348 + 0.200779i −0.0187167 + 0.0135985i
\(219\) −8.33284 −0.563081
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 0.165198 0.120023i 0.0110873 0.00805543i
\(223\) −1.50785 4.64070i −0.100973 0.310764i 0.887791 0.460247i \(-0.152239\pi\)
−0.988764 + 0.149483i \(0.952239\pi\)
\(224\) 1.55976 4.80045i 0.104216 0.320743i
\(225\) 0 0
\(226\) 0.900424 + 0.654197i 0.0598953 + 0.0435165i
\(227\) −5.04404 + 15.5240i −0.334785 + 1.03036i 0.632043 + 0.774933i \(0.282216\pi\)
−0.966828 + 0.255428i \(0.917784\pi\)
\(228\) 5.49166 + 16.9016i 0.363694 + 1.11934i
\(229\) 3.90890 2.83998i 0.258307 0.187671i −0.451093 0.892477i \(-0.648966\pi\)
0.709401 + 0.704806i \(0.248966\pi\)
\(230\) 0 0
\(231\) −15.9148 + 15.2039i −1.04712 + 1.00035i
\(232\) 1.23941 0.0813711
\(233\) −6.81172 + 4.94900i −0.446251 + 0.324220i −0.788114 0.615530i \(-0.788942\pi\)
0.341863 + 0.939750i \(0.388942\pi\)
\(234\) 0.0280202 + 0.0862373i 0.00183174 + 0.00563751i
\(235\) 0 0
\(236\) −11.3864 8.27272i −0.741193 0.538508i
\(237\) −13.4127 9.74488i −0.871247 0.632998i
\(238\) −0.441019 + 1.35732i −0.0285870 + 0.0879819i
\(239\) −7.01245 21.5821i −0.453598 1.39603i −0.872773 0.488126i \(-0.837681\pi\)
0.419175 0.907905i \(-0.362319\pi\)
\(240\) 0 0
\(241\) 11.6065 0.747638 0.373819 0.927502i \(-0.378048\pi\)
0.373819 + 0.927502i \(0.378048\pi\)
\(242\) −0.565971 0.858902i −0.0363820 0.0552123i
\(243\) −8.52534 −0.546901
\(244\) 4.03135 2.92894i 0.258080 0.187506i
\(245\) 0 0
\(246\) −0.0740540 + 0.227915i −0.00472151 + 0.0145313i
\(247\) −5.62445 4.08640i −0.357875 0.260011i
\(248\) −0.540751 0.392879i −0.0343377 0.0249478i
\(249\) 2.03094 6.25058i 0.128705 0.396114i
\(250\) 0 0
\(251\) −2.68032 + 1.94736i −0.169180 + 0.122917i −0.669153 0.743124i \(-0.733343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(252\) −7.64633 −0.481674
\(253\) −13.0761 + 12.4921i −0.822090 + 0.785370i
\(254\) 1.84800 0.115954
\(255\) 0 0
\(256\) 4.72952 + 14.5560i 0.295595 + 0.909748i
\(257\) 8.29606 25.5326i 0.517494 1.59268i −0.261204 0.965284i \(-0.584120\pi\)
0.778698 0.627399i \(-0.215880\pi\)
\(258\) −0.0291870 0.0212056i −0.00181711 0.00132020i
\(259\) −5.44965 3.95940i −0.338625 0.246025i
\(260\) 0 0
\(261\) −0.870929 2.68044i −0.0539091 0.165915i
\(262\) −0.146369 + 0.106343i −0.00904269 + 0.00656990i
\(263\) −12.1682 −0.750324 −0.375162 0.926959i \(-0.622413\pi\)
−0.375162 + 0.926959i \(0.622413\pi\)
\(264\) −0.324897 + 1.78627i −0.0199960 + 0.109937i
\(265\) 0 0
\(266\) −2.08273 + 1.51319i −0.127700 + 0.0927795i
\(267\) −6.01349 18.5076i −0.368019 1.13265i
\(268\) −0.317879 + 0.978331i −0.0194176 + 0.0597611i
\(269\) 1.69369 + 1.23053i 0.103266 + 0.0750270i 0.638220 0.769854i \(-0.279671\pi\)
−0.534954 + 0.844881i \(0.679671\pi\)
\(270\) 0 0
\(271\) 4.67938 14.4017i 0.284252 0.874838i −0.702370 0.711812i \(-0.747875\pi\)
0.986622 0.163026i \(-0.0521254\pi\)
\(272\) −4.11492 12.6644i −0.249504 0.767894i
\(273\) −6.13422 + 4.45677i −0.371260 + 0.269736i
\(274\) −1.17218 −0.0708138
\(275\) 0 0
\(276\) 15.9250 0.958574
\(277\) 6.69110 4.86137i 0.402029 0.292091i −0.368338 0.929692i \(-0.620073\pi\)
0.770367 + 0.637601i \(0.220073\pi\)
\(278\) 0.324939 + 1.00006i 0.0194885 + 0.0599795i
\(279\) −0.469687 + 1.44555i −0.0281194 + 0.0865426i
\(280\) 0 0
\(281\) −1.97985 1.43844i −0.118108 0.0858104i 0.527163 0.849764i \(-0.323256\pi\)
−0.645271 + 0.763954i \(0.723256\pi\)
\(282\) −0.293490 + 0.903268i −0.0174771 + 0.0537888i
\(283\) −8.06372 24.8176i −0.479339 1.47525i −0.840016 0.542562i \(-0.817454\pi\)
0.360677 0.932691i \(-0.382546\pi\)
\(284\) −17.2860 + 12.5590i −1.02574 + 0.745242i
\(285\) 0 0
\(286\) −0.153619 0.319320i −0.00908369 0.0188818i
\(287\) 7.90553 0.466648
\(288\) −0.765973 + 0.556512i −0.0451354 + 0.0327928i
\(289\) −1.73710 5.34624i −0.102182 0.314485i
\(290\) 0 0
\(291\) 3.98292 + 2.89376i 0.233483 + 0.169635i
\(292\) 9.15223 + 6.64949i 0.535594 + 0.389132i
\(293\) −4.15719 + 12.7945i −0.242866 + 0.747463i 0.753115 + 0.657889i \(0.228551\pi\)
−0.995980 + 0.0895739i \(0.971449\pi\)
\(294\) 0.570953 + 1.75721i 0.0332987 + 0.102483i
\(295\) 0 0
\(296\) −0.555655 −0.0322968
\(297\) 18.5539 2.50575i 1.07661 0.145399i
\(298\) 1.62087 0.0938944
\(299\) −5.04009 + 3.66184i −0.291476 + 0.211770i
\(300\) 0 0
\(301\) −0.367773 + 1.13189i −0.0211981 + 0.0652409i
\(302\) −0.000408830 0 0.000297032i −2.35255e−5 0 1.70923e-5i
\(303\) −11.0770 8.04791i −0.636357 0.462340i
\(304\) 7.42268 22.8447i 0.425720 1.31023i
\(305\) 0 0
\(306\) 0.216577 0.157353i 0.0123809 0.00899526i
\(307\) −27.1844 −1.55150 −0.775748 0.631042i \(-0.782627\pi\)
−0.775748 + 0.631042i \(0.782627\pi\)
\(308\) 29.6123 3.99921i 1.68731 0.227876i
\(309\) −20.4110 −1.16114
\(310\) 0 0
\(311\) −4.07872 12.5530i −0.231283 0.711817i −0.997593 0.0693450i \(-0.977909\pi\)
0.766310 0.642472i \(-0.222091\pi\)
\(312\) −0.193276 + 0.594843i −0.0109421 + 0.0336764i
\(313\) 13.0833 + 9.50561i 0.739515 + 0.537289i 0.892559 0.450931i \(-0.148908\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(314\) −0.0419741 0.0304959i −0.00236873 0.00172099i
\(315\) 0 0
\(316\) 6.95531 + 21.4062i 0.391267 + 1.20420i
\(317\) −4.35344 + 3.16296i −0.244514 + 0.177650i −0.703292 0.710901i \(-0.748287\pi\)
0.458778 + 0.888551i \(0.348287\pi\)
\(318\) 0.197469 0.0110735
\(319\) 4.77481 + 9.92514i 0.267338 + 0.555701i
\(320\) 0 0
\(321\) 19.9212 14.4736i 1.11189 0.807837i
\(322\) 0.712878 + 2.19401i 0.0397271 + 0.122268i
\(323\) −6.34266 + 19.5207i −0.352915 + 1.08616i
\(324\) −9.23663 6.71080i −0.513146 0.372822i
\(325\) 0 0
\(326\) −0.230137 + 0.708289i −0.0127461 + 0.0392285i
\(327\) 1.65567 + 5.09564i 0.0915590 + 0.281790i
\(328\) 0.527573 0.383304i 0.0291304 0.0211644i
\(329\) 31.3311 1.72734
\(330\) 0 0
\(331\) −18.5702 −1.02071 −0.510356 0.859963i \(-0.670486\pi\)
−0.510356 + 0.859963i \(0.670486\pi\)
\(332\) −7.21852 + 5.24456i −0.396168 + 0.287833i
\(333\) 0.390457 + 1.20170i 0.0213969 + 0.0658530i
\(334\) 0.0990106 0.304723i 0.00541762 0.0166737i
\(335\) 0 0
\(336\) −21.1941 15.3984i −1.15623 0.840054i
\(337\) −2.78305 + 8.56535i −0.151603 + 0.466585i −0.997801 0.0662836i \(-0.978886\pi\)
0.846198 + 0.532868i \(0.178886\pi\)
\(338\) 0.337928 + 1.04003i 0.0183808 + 0.0565704i
\(339\) 14.1234 10.2613i 0.767080 0.557316i
\(340\) 0 0
\(341\) 1.06292 5.84388i 0.0575604 0.316464i
\(342\) 0.482897 0.0261121
\(343\) 23.6877 17.2101i 1.27902 0.929260i
\(344\) 0.0303371 + 0.0933679i 0.00163567 + 0.00503406i
\(345\) 0 0
\(346\) −1.55591 1.13043i −0.0836461 0.0607725i
\(347\) 8.30939 + 6.03712i 0.446071 + 0.324090i 0.788043 0.615621i \(-0.211095\pi\)
−0.341971 + 0.939710i \(0.611095\pi\)
\(348\) 2.99714 9.22425i 0.160664 0.494472i
\(349\) 5.33402 + 16.4164i 0.285524 + 0.878752i 0.986241 + 0.165313i \(0.0528633\pi\)
−0.700718 + 0.713439i \(0.747137\pi\)
\(350\) 0 0
\(351\) 6.44975 0.344262
\(352\) 2.67534 2.55585i 0.142596 0.136227i
\(353\) 22.8096 1.21403 0.607017 0.794689i \(-0.292366\pi\)
0.607017 + 0.794689i \(0.292366\pi\)
\(354\) 0.784275 0.569809i 0.0416837 0.0302850i
\(355\) 0 0
\(356\) −8.16399 + 25.1262i −0.432691 + 1.33169i
\(357\) 18.1103 + 13.1579i 0.958500 + 0.696391i
\(358\) −0.193994 0.140945i −0.0102529 0.00744916i
\(359\) −4.96736 + 15.2879i −0.262167 + 0.806867i 0.730166 + 0.683270i \(0.239443\pi\)
−0.992333 + 0.123597i \(0.960557\pi\)
\(360\) 0 0
\(361\) −14.5820 + 10.5945i −0.767475 + 0.557603i
\(362\) −1.25461 −0.0659408
\(363\) −15.5560 + 4.27982i −0.816481 + 0.224632i
\(364\) 10.2939 0.539545
\(365\) 0 0
\(366\) 0.106061 + 0.326422i 0.00554390 + 0.0170624i
\(367\) −6.79759 + 20.9208i −0.354832 + 1.09206i 0.601276 + 0.799042i \(0.294659\pi\)
−0.956107 + 0.293017i \(0.905341\pi\)
\(368\) −17.4138 12.6519i −0.907759 0.659525i
\(369\) −1.19969 0.871625i −0.0624533 0.0453750i
\(370\) 0 0
\(371\) −2.01301 6.19539i −0.104510 0.321649i
\(372\) −4.23163 + 3.07446i −0.219400 + 0.159403i
\(373\) 20.2604 1.04905 0.524523 0.851396i \(-0.324244\pi\)
0.524523 + 0.851396i \(0.324244\pi\)
\(374\) −0.756449 + 0.722661i −0.0391151 + 0.0373679i
\(375\) 0 0
\(376\) 2.09087 1.51911i 0.107828 0.0783419i
\(377\) 1.17249 + 3.60854i 0.0603861 + 0.185849i
\(378\) 0.738036 2.27144i 0.0379605 0.116830i
\(379\) 3.01578 + 2.19109i 0.154910 + 0.112549i 0.662540 0.749026i \(-0.269478\pi\)
−0.507630 + 0.861575i \(0.669478\pi\)
\(380\) 0 0
\(381\) 8.95733 27.5678i 0.458898 1.41234i
\(382\) −0.525616 1.61768i −0.0268928 0.0827677i
\(383\) −8.89708 + 6.46411i −0.454620 + 0.330301i −0.791417 0.611277i \(-0.790656\pi\)
0.336797 + 0.941577i \(0.390656\pi\)
\(384\) −4.34108 −0.221530
\(385\) 0 0
\(386\) 1.46704 0.0746706
\(387\) 0.180607 0.131219i 0.00918078 0.00667023i
\(388\) −2.06539 6.35663i −0.104854 0.322709i
\(389\) 2.89926 8.92300i 0.146998 0.452414i −0.850264 0.526356i \(-0.823558\pi\)
0.997263 + 0.0739418i \(0.0235579\pi\)
\(390\) 0 0
\(391\) 14.8801 + 10.8110i 0.752517 + 0.546736i
\(392\) 1.55367 4.78171i 0.0784723 0.241513i
\(393\) 0.876932 + 2.69892i 0.0442354 + 0.136143i
\(394\) 1.65287 1.20088i 0.0832705 0.0604996i
\(395\) 0 0
\(396\) −4.93469 2.65801i −0.247977 0.133570i
\(397\) −22.3136 −1.11989 −0.559945 0.828530i \(-0.689178\pi\)
−0.559945 + 0.828530i \(0.689178\pi\)
\(398\) −0.344364 + 0.250195i −0.0172614 + 0.0125411i
\(399\) 12.4781 + 38.4038i 0.624688 + 1.92259i
\(400\) 0 0
\(401\) 19.9683 + 14.5078i 0.997171 + 0.724487i 0.961480 0.274876i \(-0.0886368\pi\)
0.0356909 + 0.999363i \(0.488637\pi\)
\(402\) −0.0573216 0.0416466i −0.00285894 0.00207714i
\(403\) 0.632315 1.94606i 0.0314978 0.0969404i
\(404\) 5.74411 + 17.6786i 0.285780 + 0.879541i
\(405\) 0 0
\(406\) 1.40500 0.0697292
\(407\) −2.14066 4.44967i −0.106109 0.220562i
\(408\) 1.84656 0.0914182
\(409\) −23.8705 + 17.3429i −1.18032 + 0.857553i −0.992208 0.124594i \(-0.960237\pi\)
−0.188113 + 0.982147i \(0.560237\pi\)
\(410\) 0 0
\(411\) −5.68158 + 17.4861i −0.280252 + 0.862526i
\(412\) 22.4181 + 16.2877i 1.10446 + 0.802437i
\(413\) −25.8722 18.7972i −1.27309 0.924951i
\(414\) 0.133720 0.411547i 0.00657196 0.0202264i
\(415\) 0 0
\(416\) 1.03119 0.749203i 0.0505582 0.0367327i
\(417\) 16.4935 0.807689
\(418\) −1.87013 + 0.252566i −0.0914713 + 0.0123534i
\(419\) 9.03564 0.441420 0.220710 0.975339i \(-0.429163\pi\)
0.220710 + 0.975339i \(0.429163\pi\)
\(420\) 0 0
\(421\) 4.39426 + 13.5242i 0.214163 + 0.659127i 0.999212 + 0.0396928i \(0.0126379\pi\)
−0.785049 + 0.619434i \(0.787362\pi\)
\(422\) −0.547884 + 1.68621i −0.0266706 + 0.0820835i
\(423\) −4.75459 3.45441i −0.231176 0.167959i
\(424\) −0.434725 0.315846i −0.0211121 0.0153388i
\(425\) 0 0
\(426\) −0.454780 1.39967i −0.0220342 0.0678142i
\(427\) 9.16001 6.65514i 0.443284 0.322065i
\(428\) −33.4298 −1.61589
\(429\) −5.50808 + 0.743880i −0.265933 + 0.0359149i
\(430\) 0 0
\(431\) 1.40086 1.01778i 0.0674769 0.0490248i −0.553535 0.832826i \(-0.686722\pi\)
0.621012 + 0.783801i \(0.286722\pi\)
\(432\) 6.88623 + 21.1936i 0.331314 + 1.01968i
\(433\) −5.70062 + 17.5447i −0.273955 + 0.843145i 0.715540 + 0.698572i \(0.246181\pi\)
−0.989494 + 0.144573i \(0.953819\pi\)
\(434\) −0.613000 0.445371i −0.0294250 0.0213785i
\(435\) 0 0
\(436\) 2.24777 6.91791i 0.107649 0.331308i
\(437\) 10.2525 + 31.5539i 0.490442 + 1.50943i
\(438\) −0.630389 + 0.458004i −0.0301211 + 0.0218843i
\(439\) −17.1704 −0.819499 −0.409750 0.912198i \(-0.634384\pi\)
−0.409750 + 0.912198i \(0.634384\pi\)
\(440\) 0 0
\(441\) −11.4331 −0.544432
\(442\) −0.291567 + 0.211836i −0.0138684 + 0.0100760i
\(443\) −11.3098 34.8079i −0.537344 1.65377i −0.738529 0.674221i \(-0.764479\pi\)
0.201185 0.979553i \(-0.435521\pi\)
\(444\) −1.34369 + 4.13545i −0.0637686 + 0.196260i
\(445\) 0 0
\(446\) −0.369141 0.268196i −0.0174793 0.0126995i
\(447\) 7.85640 24.1795i 0.371595 1.14365i
\(448\) 10.8929 + 33.5249i 0.514641 + 1.58390i
\(449\) 13.4320 9.75895i 0.633897 0.460553i −0.223851 0.974623i \(-0.571863\pi\)
0.857748 + 0.514070i \(0.171863\pi\)
\(450\) 0 0
\(451\) 5.10196 + 2.74811i 0.240242 + 0.129404i
\(452\) −23.7006 −1.11478
\(453\) −0.00641262 + 0.00465904i −0.000301291 + 0.000218901i
\(454\) 0.471667 + 1.45164i 0.0221365 + 0.0681290i
\(455\) 0 0
\(456\) 2.69476 + 1.95785i 0.126193 + 0.0916849i
\(457\) −25.6178 18.6124i −1.19835 0.870651i −0.204227 0.978923i \(-0.565468\pi\)
−0.994121 + 0.108272i \(0.965468\pi\)
\(458\) 0.139617 0.429696i 0.00652385 0.0200784i
\(459\) −5.88426 18.1099i −0.274654 0.845297i
\(460\) 0 0
\(461\) −25.4351 −1.18463 −0.592315 0.805706i \(-0.701786\pi\)
−0.592315 + 0.805706i \(0.701786\pi\)
\(462\) −0.368306 + 2.02493i −0.0171352 + 0.0942083i
\(463\) 16.3319 0.759007 0.379503 0.925190i \(-0.376095\pi\)
0.379503 + 0.925190i \(0.376095\pi\)
\(464\) −10.6057 + 7.70549i −0.492357 + 0.357718i
\(465\) 0 0
\(466\) −0.243298 + 0.748795i −0.0112706 + 0.0346873i
\(467\) 6.90020 + 5.01329i 0.319303 + 0.231987i 0.735878 0.677114i \(-0.236770\pi\)
−0.416575 + 0.909101i \(0.636770\pi\)
\(468\) −1.56213 1.13495i −0.0722093 0.0524631i
\(469\) −0.722284 + 2.22296i −0.0333520 + 0.102647i
\(470\) 0 0
\(471\) −0.658376 + 0.478338i −0.0303364 + 0.0220407i
\(472\) −2.63797 −0.121422
\(473\) −0.630814 + 0.602638i −0.0290049 + 0.0277093i
\(474\) −1.55030 −0.0712076
\(475\) 0 0
\(476\) −9.39133 28.9036i −0.430451 1.32479i
\(477\) −0.377594 + 1.16211i −0.0172888 + 0.0532096i
\(478\) −1.71673 1.24728i −0.0785216 0.0570493i
\(479\) −24.2283 17.6029i −1.10702 0.804296i −0.124827 0.992178i \(-0.539838\pi\)
−0.982192 + 0.187882i \(0.939838\pi\)
\(480\) 0 0
\(481\) −0.525653 1.61779i −0.0239677 0.0737650i
\(482\) 0.878041 0.637934i 0.0399937 0.0290571i
\(483\) 36.1848 1.64646
\(484\) 20.5010 + 7.71283i 0.931862 + 0.350583i
\(485\) 0 0
\(486\) −0.644951 + 0.468585i −0.0292556 + 0.0212554i
\(487\) 6.05768 + 18.6436i 0.274500 + 0.844823i 0.989351 + 0.145547i \(0.0464942\pi\)
−0.714852 + 0.699276i \(0.753506\pi\)
\(488\) 0.288612 0.888257i 0.0130649 0.0402095i
\(489\) 9.45050 + 6.86619i 0.427367 + 0.310500i
\(490\) 0 0
\(491\) −4.87911 + 15.0163i −0.220191 + 0.677678i 0.778553 + 0.627579i \(0.215954\pi\)
−0.998744 + 0.0500997i \(0.984046\pi\)
\(492\) −1.57695 4.85335i −0.0710944 0.218806i
\(493\) 9.06253 6.58432i 0.408156 0.296543i
\(494\) −0.650099 −0.0292494
\(495\) 0 0
\(496\) 7.06980 0.317443
\(497\) −39.2773 + 28.5366i −1.76183 + 1.28004i
\(498\) −0.189913 0.584491i −0.00851019 0.0261917i
\(499\) 3.46350 10.6596i 0.155048 0.477188i −0.843118 0.537729i \(-0.819283\pi\)
0.998166 + 0.0605408i \(0.0192825\pi\)
\(500\) 0 0
\(501\) −4.06584 2.95400i −0.181648 0.131975i
\(502\) −0.0957345 + 0.294640i −0.00427284 + 0.0131504i
\(503\) 0.105965 + 0.326125i 0.00472473 + 0.0145412i 0.953391 0.301737i \(-0.0975666\pi\)
−0.948666 + 0.316279i \(0.897567\pi\)
\(504\) −1.15945 + 0.842387i −0.0516459 + 0.0375229i
\(505\) 0 0
\(506\) −0.302613 + 1.66375i −0.0134528 + 0.0739628i
\(507\) 17.1528 0.761782
\(508\) −31.8368 + 23.1308i −1.41253 + 1.02626i
\(509\) −6.04518 18.6052i −0.267948 0.824659i −0.991000 0.133865i \(-0.957261\pi\)
0.723052 0.690794i \(-0.242739\pi\)
\(510\) 0 0
\(511\) 20.7957 + 15.1089i 0.919946 + 0.668380i
\(512\) 5.94673 + 4.32055i 0.262811 + 0.190943i
\(513\) 10.6143 32.6674i 0.468632 1.44230i
\(514\) −0.775763 2.38755i −0.0342175 0.105311i
\(515\) 0 0
\(516\) 0.768249 0.0338203
\(517\) 20.2200 + 10.8913i 0.889275 + 0.478998i
\(518\) −0.629896 −0.0276760
\(519\) −24.4049 + 17.7312i −1.07126 + 0.778313i
\(520\) 0 0
\(521\) 12.9869 39.9695i 0.568966 1.75110i −0.0868981 0.996217i \(-0.527695\pi\)
0.655864 0.754879i \(-0.272305\pi\)
\(522\) −0.213214 0.154909i −0.00933212 0.00678018i
\(523\) 24.2790 + 17.6398i 1.06165 + 0.771333i 0.974393 0.224853i \(-0.0721903\pi\)
0.0872555 + 0.996186i \(0.472190\pi\)
\(524\) 1.19054 3.66409i 0.0520088 0.160067i
\(525\) 0 0
\(526\) −0.920538 + 0.668810i −0.0401374 + 0.0291615i
\(527\) −6.04112 −0.263155
\(528\) −8.32519 17.3051i −0.362308 0.753109i
\(529\) 6.73067 0.292638
\(530\) 0 0
\(531\) 1.85369 + 5.70508i 0.0804434 + 0.247579i
\(532\) 16.9405 52.1375i 0.734464 2.26045i
\(533\) 1.61508 + 1.17342i 0.0699568 + 0.0508266i
\(534\) −1.47217 1.06960i −0.0637072 0.0462860i
\(535\) 0 0
\(536\) 0.0595802 + 0.183369i 0.00257347 + 0.00792033i
\(537\) −3.04285 + 2.21076i −0.131309 + 0.0954014i
\(538\) 0.195764 0.00843998
\(539\) 44.2773 5.97976i 1.90716 0.257567i
\(540\) 0 0
\(541\) 8.35196 6.06806i 0.359079 0.260886i −0.393589 0.919287i \(-0.628767\pi\)
0.752668 + 0.658400i \(0.228767\pi\)
\(542\) −0.437568 1.34670i −0.0187952 0.0578456i
\(543\) −6.08113 + 18.7158i −0.260966 + 0.803171i
\(544\) −3.04442 2.21190i −0.130529 0.0948346i
\(545\) 0 0
\(546\) −0.219100 + 0.674320i −0.00937660 + 0.0288582i
\(547\) −12.9221 39.7702i −0.552510 1.70045i −0.702431 0.711752i \(-0.747902\pi\)
0.149921 0.988698i \(-0.452098\pi\)
\(548\) 20.1939 14.6717i 0.862641 0.626746i
\(549\) −2.12382 −0.0906426
\(550\) 0 0
\(551\) 20.2065 0.860826
\(552\) 2.41478 1.75444i 0.102780 0.0746740i
\(553\) 15.8038 + 48.6392i 0.672047 + 2.06835i
\(554\) 0.238990 0.735536i 0.0101537 0.0312499i
\(555\) 0 0
\(556\) −18.1153 13.1616i −0.768261 0.558174i
\(557\) 11.8918 36.5993i 0.503874 1.55076i −0.298782 0.954321i \(-0.596580\pi\)
0.802656 0.596442i \(-0.203420\pi\)
\(558\) 0.0439203 + 0.135173i 0.00185930 + 0.00572233i
\(559\) −0.243142 + 0.176653i −0.0102838 + 0.00747163i
\(560\) 0 0
\(561\) 7.11385 + 14.7872i 0.300347 + 0.624315i
\(562\) −0.228840 −0.00965303
\(563\) 24.8258 18.0370i 1.04628 0.760170i 0.0747817 0.997200i \(-0.476174\pi\)
0.971502 + 0.237030i \(0.0761740\pi\)
\(564\) −6.24975 19.2347i −0.263162 0.809929i
\(565\) 0 0
\(566\) −1.97410 1.43427i −0.0829775 0.0602867i
\(567\) −20.9874 15.2483i −0.881389 0.640367i
\(568\) −1.23754 + 3.80877i −0.0519262 + 0.159812i
\(569\) 4.03220 + 12.4098i 0.169039 + 0.520247i 0.999311 0.0371104i \(-0.0118153\pi\)
−0.830273 + 0.557357i \(0.811815\pi\)
\(570\) 0 0
\(571\) 16.1300 0.675018 0.337509 0.941322i \(-0.390416\pi\)
0.337509 + 0.941322i \(0.390416\pi\)
\(572\) 6.64331 + 3.57834i 0.277771 + 0.149618i
\(573\) −26.6796 −1.11456
\(574\) 0.598062 0.434517i 0.0249626 0.0181364i
\(575\) 0 0
\(576\) 2.04326 6.28850i 0.0851358 0.262021i
\(577\) −11.7885 8.56487i −0.490763 0.356560i 0.314715 0.949186i \(-0.398091\pi\)
−0.805478 + 0.592626i \(0.798091\pi\)
\(578\) −0.425263 0.308972i −0.0176886 0.0128515i
\(579\) 7.11080 21.8848i 0.295515 0.909501i
\(580\) 0 0
\(581\) −16.4019 + 11.9167i −0.680465 + 0.494387i
\(582\) 0.460364 0.0190827
\(583\) 0.854511 4.69806i 0.0353902 0.194574i
\(584\) 2.12036 0.0877411
\(585\) 0 0
\(586\) 0.388738 + 1.19641i 0.0160586 + 0.0494234i
\(587\) 8.61360 26.5099i 0.355521 1.09418i −0.600185 0.799861i \(-0.704906\pi\)
0.955707 0.294321i \(-0.0950936\pi\)
\(588\) −31.8307 23.1263i −1.31267 0.953713i
\(589\) −8.81605 6.40524i −0.363259 0.263923i
\(590\) 0 0
\(591\) −9.90278 30.4776i −0.407346 1.25368i
\(592\) 4.75478 3.45455i 0.195420 0.141981i
\(593\) −15.1037 −0.620236 −0.310118 0.950698i \(-0.600369\pi\)
−0.310118 + 0.950698i \(0.600369\pi\)
\(594\) 1.26590 1.20936i 0.0519405 0.0496205i
\(595\) 0 0
\(596\) −27.9238 + 20.2878i −1.14380 + 0.831023i
\(597\) 2.06317 + 6.34979i 0.0844400 + 0.259880i
\(598\) −0.180020 + 0.554044i −0.00736156 + 0.0226566i
\(599\) 20.9339 + 15.2093i 0.855334 + 0.621437i 0.926612 0.376020i \(-0.122708\pi\)
−0.0712774 + 0.997457i \(0.522708\pi\)
\(600\) 0 0
\(601\) −14.5321 + 44.7252i −0.592776 + 1.82438i −0.0272781 + 0.999628i \(0.508684\pi\)
−0.565498 + 0.824750i \(0.691316\pi\)
\(602\) 0.0343904 + 0.105843i 0.00140165 + 0.00431383i
\(603\) 0.354702 0.257706i 0.0144446 0.0104946i
\(604\) 0.0107610 0.000437861
\(605\) 0 0
\(606\) −1.28033 −0.0520098
\(607\) −28.4967 + 20.7041i −1.15665 + 0.840353i −0.989350 0.145553i \(-0.953504\pi\)
−0.167297 + 0.985907i \(0.553504\pi\)
\(608\) −2.09763 6.45584i −0.0850701 0.261819i
\(609\) 6.81009 20.9593i 0.275959 0.849314i
\(610\) 0 0
\(611\) 6.40086 + 4.65049i 0.258951 + 0.188139i
\(612\) −1.76160 + 5.42165i −0.0712085 + 0.219157i
\(613\) 7.23461 + 22.2658i 0.292203 + 0.899309i 0.984147 + 0.177357i \(0.0567548\pi\)
−0.691943 + 0.721952i \(0.743245\pi\)
\(614\) −2.05653 + 1.49416i −0.0829948 + 0.0602993i
\(615\) 0 0
\(616\) 4.04965 3.86876i 0.163165 0.155877i
\(617\) −22.8910 −0.921557 −0.460778 0.887515i \(-0.652430\pi\)
−0.460778 + 0.887515i \(0.652430\pi\)
\(618\) −1.54411 + 1.12187i −0.0621134 + 0.0451280i
\(619\) 0.657441 + 2.02339i 0.0264248 + 0.0813271i 0.963399 0.268071i \(-0.0863861\pi\)
−0.936974 + 0.349398i \(0.886386\pi\)
\(620\) 0 0
\(621\) −24.9014 18.0920i −0.999260 0.726005i
\(622\) −0.998521 0.725468i −0.0400370 0.0290886i
\(623\) −18.5502 + 57.0916i −0.743198 + 2.28733i
\(624\) −2.04431 6.29173i −0.0818377 0.251871i
\(625\) 0 0
\(626\) 1.51223 0.0604410
\(627\) −5.29691 + 29.1221i −0.211538 + 1.16303i
\(628\) 1.10482 0.0440873
\(629\) −4.06294 + 2.95190i −0.162000 + 0.117700i
\(630\) 0 0
\(631\) 4.77702 14.7022i 0.190170 0.585284i −0.809829 0.586666i \(-0.800440\pi\)
0.999999 + 0.00138227i \(0.000439991\pi\)
\(632\) 3.41296 + 2.47966i 0.135760 + 0.0986357i
\(633\) 22.4987 + 16.3462i 0.894242 + 0.649705i
\(634\) −0.155494 + 0.478563i −0.00617547 + 0.0190062i
\(635\) 0 0
\(636\) −3.40193 + 2.47164i −0.134895 + 0.0980071i
\(637\) 15.3918 0.609844
\(638\) 0.906743 + 0.488406i 0.0358983 + 0.0193362i
\(639\) 9.10676 0.360258
\(640\) 0 0
\(641\) 4.38201 + 13.4864i 0.173079 + 0.532682i 0.999541 0.0303108i \(-0.00964970\pi\)
−0.826461 + 0.562993i \(0.809650\pi\)
\(642\) 0.711537 2.18989i 0.0280821 0.0864279i
\(643\) −10.0270 7.28504i −0.395426 0.287294i 0.372249 0.928133i \(-0.378587\pi\)
−0.767675 + 0.640839i \(0.778587\pi\)
\(644\) −39.7429 28.8749i −1.56609 1.13783i
\(645\) 0 0
\(646\) 0.593101 + 1.82538i 0.0233352 + 0.0718185i
\(647\) 26.8970 19.5418i 1.05743 0.768267i 0.0838181 0.996481i \(-0.473289\pi\)
0.973611 + 0.228214i \(0.0732885\pi\)
\(648\) −2.13991 −0.0840637
\(649\) −10.1628 21.1248i −0.398923 0.829220i
\(650\) 0 0
\(651\) −9.61510 + 6.98578i −0.376846 + 0.273794i
\(652\) −4.90068 15.0827i −0.191925 0.590685i
\(653\) 10.7558 33.1030i 0.420908 1.29542i −0.485951 0.873986i \(-0.661526\pi\)
0.906858 0.421435i \(-0.138474\pi\)
\(654\) 0.405329 + 0.294489i 0.0158496 + 0.0115154i
\(655\) 0 0
\(656\) −2.13145 + 6.55992i −0.0832191 + 0.256122i
\(657\) −1.48997 4.58566i −0.0581293 0.178904i
\(658\) 2.37023 1.72207i 0.0924011 0.0671334i
\(659\) −34.4953 −1.34375 −0.671873 0.740666i \(-0.734510\pi\)
−0.671873 + 0.740666i \(0.734510\pi\)
\(660\) 0 0
\(661\) 1.77827 0.0691668 0.0345834 0.999402i \(-0.488990\pi\)
0.0345834 + 0.999402i \(0.488990\pi\)
\(662\) −1.40486 + 1.02069i −0.0546014 + 0.0396702i
\(663\) 1.74685 + 5.37626i 0.0678421 + 0.208797i
\(664\) −0.516788 + 1.59051i −0.0200553 + 0.0617238i
\(665\) 0 0
\(666\) 0.0955887 + 0.0694493i 0.00370399 + 0.00269110i
\(667\) 5.59541 17.2209i 0.216655 0.666796i
\(668\) 2.10839 + 6.48896i 0.0815761 + 0.251065i
\(669\) −5.79009 + 4.20675i −0.223858 + 0.162642i
\(670\) 0 0
\(671\) 8.22502 1.11081i 0.317523 0.0428823i
\(672\) −7.40331 −0.285589
\(673\) 15.6111 11.3422i 0.601765 0.437208i −0.244740 0.969589i \(-0.578703\pi\)
0.846505 + 0.532381i \(0.178703\pi\)
\(674\) 0.260243 + 0.800945i 0.0100242 + 0.0308513i
\(675\) 0 0
\(676\) −18.8395 13.6877i −0.724595 0.526449i
\(677\) −13.6805 9.93949i −0.525786 0.382006i 0.292993 0.956114i \(-0.405349\pi\)
−0.818779 + 0.574109i \(0.805349\pi\)
\(678\) 0.504455 1.55255i 0.0193735 0.0596255i
\(679\) −4.69298 14.4435i −0.180100 0.554291i
\(680\) 0 0
\(681\) 23.9412 0.917430
\(682\) −0.240791 0.500518i −0.00922035 0.0191658i
\(683\) −4.14018 −0.158420 −0.0792098 0.996858i \(-0.525240\pi\)
−0.0792098 + 0.996858i \(0.525240\pi\)
\(684\) −8.31920 + 6.04425i −0.318093 + 0.231108i
\(685\) 0 0
\(686\) 0.846069 2.60393i 0.0323031 0.0994186i
\(687\) −5.73331 4.16549i −0.218739 0.158923i
\(688\) −0.840072 0.610348i −0.0320274 0.0232693i
\(689\) 0.508335 1.56450i 0.0193660 0.0596025i
\(690\) 0 0
\(691\) 37.4996 27.2450i 1.42655 1.03645i 0.435904 0.899993i \(-0.356429\pi\)
0.990646 0.136457i \(-0.0435714\pi\)
\(692\) 40.9539 1.55684
\(693\) −11.2126 6.03952i −0.425931 0.229422i
\(694\) 0.960437 0.0364577
\(695\) 0 0
\(696\) −0.561756 1.72891i −0.0212933 0.0655340i
\(697\) 1.82132 5.60543i 0.0689872 0.212321i
\(698\) 1.30583 + 0.948743i 0.0494265 + 0.0359105i
\(699\) 9.99096 + 7.25886i 0.377893 + 0.274555i
\(700\) 0 0
\(701\) −14.0465 43.2306i −0.530528 1.63280i −0.753119 0.657884i \(-0.771452\pi\)
0.222591 0.974912i \(-0.428548\pi\)
\(702\) 0.487931 0.354502i 0.0184158 0.0133798i
\(703\) −9.05904 −0.341668
\(704\) −4.62398 + 25.4224i −0.174273 + 0.958143i
\(705\) 0 0
\(706\) 1.72557 1.25370i 0.0649428 0.0471837i
\(707\) 13.0518 + 40.1692i 0.490862 + 1.51072i
\(708\) −6.37915 + 19.6330i −0.239743 + 0.737853i
\(709\) 11.3458 + 8.24318i 0.426099 + 0.309579i 0.780087 0.625671i \(-0.215175\pi\)
−0.353988 + 0.935250i \(0.615175\pi\)
\(710\) 0 0
\(711\) 2.96444 9.12360i 0.111175 0.342162i
\(712\) 1.53018 + 4.70941i 0.0573460 + 0.176493i
\(713\) −7.90010 + 5.73976i −0.295861 + 0.214956i
\(714\) 2.09327 0.0783388
\(715\) 0 0
\(716\) 5.10622 0.190829
\(717\) −26.9275 + 19.5640i −1.00563 + 0.730630i
\(718\) 0.464497 + 1.42957i 0.0173349 + 0.0533512i
\(719\) 4.05999 12.4954i 0.151412 0.465998i −0.846368 0.532599i \(-0.821215\pi\)
0.997780 + 0.0666007i \(0.0212154\pi\)
\(720\) 0 0
\(721\) 50.9383 + 37.0088i 1.89704 + 1.37828i
\(722\) −0.520835 + 1.60297i −0.0193835 + 0.0596562i
\(723\) −5.26057 16.1904i −0.195643 0.602126i
\(724\) 21.6140 15.7035i 0.803279 0.583616i
\(725\) 0 0
\(726\) −0.941597 + 1.17879i −0.0349459 + 0.0437491i
\(727\) 18.3635 0.681063 0.340532 0.940233i \(-0.389393\pi\)
0.340532 + 0.940233i \(0.389393\pi\)
\(728\) 1.56090 1.13406i 0.0578509 0.0420312i
\(729\) 9.17943 + 28.2514i 0.339979 + 1.04635i
\(730\) 0 0
\(731\) 0.717839 + 0.521540i 0.0265502 + 0.0192899i
\(732\) −5.91290 4.29598i −0.218547 0.158784i
\(733\) 11.4329 35.1869i 0.422284 1.29966i −0.483287 0.875462i \(-0.660557\pi\)
0.905571 0.424195i \(-0.139443\pi\)
\(734\) 0.635642 + 1.95631i 0.0234620 + 0.0722086i
\(735\) 0 0
\(736\) −6.08282 −0.224216
\(737\) −1.23888 + 1.18354i −0.0456348 + 0.0435964i
\(738\) −0.138666 −0.00510435
\(739\) −7.96909 + 5.78988i −0.293148 + 0.212984i −0.724632 0.689136i \(-0.757990\pi\)
0.431484 + 0.902121i \(0.357990\pi\)
\(740\) 0 0
\(741\) −3.15105 + 9.69793i −0.115757 + 0.356262i
\(742\) −0.492808 0.358046i −0.0180915 0.0131443i
\(743\) 22.2052 + 16.1330i 0.814629 + 0.591862i 0.915169 0.403071i \(-0.132057\pi\)
−0.100540 + 0.994933i \(0.532057\pi\)
\(744\) −0.302951 + 0.932388i −0.0111067 + 0.0341830i
\(745\) 0 0
\(746\) 1.53272 1.11359i 0.0561170 0.0407714i
\(747\) 3.80291 0.139141
\(748\) 3.98658 21.9180i 0.145764 0.801401i
\(749\) −75.9591 −2.77549
\(750\) 0 0
\(751\) 4.24232 + 13.0565i 0.154804 + 0.476439i 0.998141 0.0609469i \(-0.0194120\pi\)
−0.843337 + 0.537385i \(0.819412\pi\)
\(752\) −8.44732 + 25.9982i −0.308042 + 0.948056i
\(753\) 3.93131 + 2.85626i 0.143265 + 0.104088i
\(754\) 0.287039 + 0.208546i 0.0104533 + 0.00759479i
\(755\) 0 0
\(756\) 15.7162 + 48.3694i 0.571592 + 1.75918i
\(757\) −18.5507 + 13.4779i −0.674236 + 0.489861i −0.871440 0.490501i \(-0.836814\pi\)
0.197205 + 0.980362i \(0.436814\pi\)
\(758\) 0.348578 0.0126609
\(759\) 23.3524 + 12.5785i 0.847640 + 0.456571i
\(760\) 0 0
\(761\) 16.7319 12.1565i 0.606533 0.440672i −0.241659 0.970361i \(-0.577692\pi\)
0.848192 + 0.529689i \(0.177692\pi\)
\(762\) −0.837599 2.57786i −0.0303430 0.0933861i
\(763\) 5.10737 15.7189i 0.184899 0.569061i
\(764\) 29.3031 + 21.2899i 1.06015 + 0.770243i
\(765\) 0 0
\(766\) −0.317783 + 0.978034i −0.0114819 + 0.0353378i
\(767\) −2.49553 7.68046i −0.0901084 0.277325i
\(768\) 18.1611 13.1948i 0.655334 0.476128i
\(769\) 38.4306 1.38584 0.692922 0.721013i \(-0.256323\pi\)
0.692922 + 0.721013i \(0.256323\pi\)
\(770\) 0 0
\(771\) −39.3768 −1.41812
\(772\) −25.2738 + 18.3625i −0.909624 + 0.660880i
\(773\) −15.4325 47.4964i −0.555069 1.70833i −0.695762 0.718272i \(-0.744933\pi\)
0.140693 0.990053i \(-0.455067\pi\)
\(774\) 0.00645085 0.0198537i 0.000231871 0.000713626i
\(775\) 0 0
\(776\) −1.01349 0.736341i −0.0363821 0.0264331i
\(777\) −3.05312 + 9.39654i −0.109530 + 0.337099i
\(778\) −0.271109 0.834389i −0.00971975 0.0299143i
\(779\) 8.60121 6.24914i 0.308170 0.223899i
\(780\) 0 0
\(781\) −35.2681 + 4.76305i −1.26199 + 0.170435i
\(782\) 1.71991 0.0615037
\(783\) −15.1659 + 11.0187i −0.541986 + 0.393776i
\(784\) 16.4334 + 50.5767i 0.586906 + 1.80631i
\(785\) 0 0
\(786\) 0.214684 + 0.155977i 0.00765751 + 0.00556351i
\(787\) −12.5834 9.14241i −0.448551 0.325892i 0.340472 0.940255i \(-0.389413\pi\)
−0.789024 + 0.614363i \(0.789413\pi\)
\(788\) −13.4442 + 41.3769i −0.478928 + 1.47399i
\(789\) 5.51518 + 16.9740i 0.196346 + 0.604290i
\(790\) 0 0
\(791\) −53.8524 −1.91477
\(792\) −1.04110 + 0.140603i −0.0369938 + 0.00499610i
\(793\) 2.85919 0.101533
\(794\) −1.68805 + 1.22644i −0.0599067 + 0.0435248i
\(795\) 0 0
\(796\) 2.80099 8.62057i 0.0992786 0.305548i
\(797\) 37.3012 + 27.1009i 1.32127 + 0.959962i 0.999915 + 0.0130049i \(0.00413972\pi\)
0.321359 + 0.946957i \(0.395860\pi\)
\(798\) 3.05480 + 2.21944i 0.108139 + 0.0785674i
\(799\) 7.21821 22.2154i 0.255362 0.785923i
\(800\) 0 0
\(801\) 9.10970 6.61858i 0.321875 0.233856i
\(802\) 2.30803 0.0814994
\(803\) 8.16868 + 16.9798i 0.288266 + 0.599203i
\(804\) 1.50879 0.0532111
\(805\) 0 0
\(806\) −0.0591277 0.181976i −0.00208268 0.00640984i
\(807\) 0.948873 2.92033i 0.0334019 0.102801i
\(808\) 2.81863 + 2.04786i 0.0991591 + 0.0720433i
\(809\) 30.3700 + 22.0651i 1.06775 + 0.775767i 0.975507 0.219969i \(-0.0705956\pi\)
0.0922454 + 0.995736i \(0.470596\pi\)
\(810\) 0 0
\(811\) 2.22661 + 6.85281i 0.0781870 + 0.240635i 0.982509 0.186217i \(-0.0596227\pi\)
−0.904322 + 0.426852i \(0.859623\pi\)
\(812\) −24.2050 + 17.5859i −0.849428 + 0.617146i
\(813\) −22.2104 −0.778953
\(814\) −0.406514 0.218964i −0.0142483 0.00767468i
\(815\) 0 0
\(816\) −15.8011 + 11.4802i −0.553150 + 0.401887i
\(817\) 0.494596 + 1.52221i 0.0173037 + 0.0532554i
\(818\) −0.852597 + 2.62402i −0.0298104 + 0.0917469i
\(819\) −3.54946 2.57883i −0.124028 0.0901117i
\(820\) 0 0
\(821\) −2.66807 + 8.21147i −0.0931163 + 0.286582i −0.986758 0.162198i \(-0.948142\pi\)
0.893642 + 0.448781i \(0.148142\pi\)
\(822\) 0.531284 + 1.63512i 0.0185306 + 0.0570315i
\(823\) −20.2352 + 14.7017i −0.705354 + 0.512470i −0.881672 0.471864i \(-0.843581\pi\)
0.176318 + 0.984333i \(0.443581\pi\)
\(824\) 5.19375 0.180933
\(825\) 0 0
\(826\) −2.99042 −0.104050
\(827\) 39.5387 28.7265i 1.37489 0.998919i 0.377558 0.925986i \(-0.376764\pi\)
0.997337 0.0729332i \(-0.0232360\pi\)
\(828\) 2.84751 + 8.76373i 0.0989577 + 0.304561i
\(829\) 1.63522 5.03270i 0.0567937 0.174793i −0.918636 0.395106i \(-0.870708\pi\)
0.975429 + 0.220313i \(0.0707079\pi\)
\(830\) 0 0
\(831\) −9.81405 7.13033i −0.340446 0.247348i
\(832\) −2.75073 + 8.46589i −0.0953645 + 0.293502i
\(833\) −14.0423 43.2177i −0.486536 1.49740i
\(834\) 1.24775 0.906543i 0.0432060 0.0313910i
\(835\) 0 0
\(836\) 29.0568 27.7590i 1.00495 0.960064i
\(837\) 10.1097 0.349441
\(838\) 0.683556 0.496633i 0.0236131 0.0171559i
\(839\) −4.09196 12.5938i −0.141270 0.434785i 0.855242 0.518228i \(-0.173408\pi\)
−0.996513 + 0.0834435i \(0.973408\pi\)
\(840\) 0 0
\(841\) 14.5397 + 10.5637i 0.501369 + 0.364266i
\(842\) 1.07577 + 0.781592i 0.0370734 + 0.0269354i
\(843\) −1.10919 + 3.41375i −0.0382026 + 0.117576i
\(844\) −11.6670 35.9072i −0.401593 1.23598i
\(845\) 0 0
\(846\) −0.549557 −0.0188942
\(847\) 46.5822 + 17.5251i 1.60058 + 0.602168i
\(848\) 5.68361 0.195176
\(849\) −30.9643 + 22.4969i −1.06269 + 0.772092i
\(850\) 0 0
\(851\) −2.50855 + 7.72053i −0.0859920 + 0.264656i
\(852\) 25.3540 + 18.4208i 0.868614 + 0.631085i
\(853\) 1.79509 + 1.30421i 0.0614626 + 0.0446552i 0.618092 0.786106i \(-0.287906\pi\)
−0.556630 + 0.830761i \(0.687906\pi\)
\(854\) 0.327174 1.00694i 0.0111956 0.0344567i
\(855\) 0 0
\(856\) −5.06911 + 3.68292i −0.173259 + 0.125880i
\(857\) −31.4625 −1.07474 −0.537368 0.843348i \(-0.680582\pi\)
−0.537368 + 0.843348i \(0.680582\pi\)
\(858\) −0.375806 + 0.359020i −0.0128298 + 0.0122567i
\(859\) 9.07676 0.309695 0.154848 0.987938i \(-0.450511\pi\)
0.154848 + 0.987938i \(0.450511\pi\)
\(860\) 0 0
\(861\) −3.58314 11.0278i −0.122113 0.375826i
\(862\) 0.0500352 0.153993i 0.00170421 0.00524501i
\(863\) 34.3704 + 24.9716i 1.16998 + 0.850042i 0.991007 0.133811i \(-0.0427215\pi\)
0.178976 + 0.983853i \(0.442721\pi\)
\(864\) 5.09477 + 3.70157i 0.173328 + 0.125930i
\(865\) 0 0
\(866\) 0.533065 + 1.64060i 0.0181143 + 0.0557500i
\(867\) −6.67038 + 4.84632i −0.226538 + 0.164590i
\(868\) 16.1351 0.547662
\(869\) −6.70865 + 36.8838i −0.227575 + 1.25120i
\(870\) 0 0
\(871\) −0.477516 + 0.346936i −0.0161800 + 0.0117555i
\(872\) −0.421300 1.29663i −0.0142670 0.0439094i
\(873\) −0.880296 + 2.70927i −0.0297935 + 0.0916950i
\(874\) 2.50993 + 1.82357i 0.0848996 + 0.0616832i
\(875\) 0 0
\(876\) 5.12746 15.7807i 0.173241 0.533181i
\(877\) 9.67537 + 29.7777i 0.326714 + 1.00552i 0.970661 + 0.240452i \(0.0772957\pi\)
−0.643947 + 0.765070i \(0.722704\pi\)
\(878\) −1.29896 + 0.943750i −0.0438378 + 0.0318500i
\(879\) 19.7319 0.665539
\(880\) 0 0
\(881\) 21.5189 0.724990 0.362495 0.931986i \(-0.381925\pi\)
0.362495 + 0.931986i \(0.381925\pi\)
\(882\) −0.864925 + 0.628405i −0.0291235 + 0.0211595i
\(883\) 0.201650 + 0.620614i 0.00678605 + 0.0208853i 0.954392 0.298556i \(-0.0965049\pi\)
−0.947606 + 0.319441i \(0.896505\pi\)
\(884\) 2.37155 7.29889i 0.0797639 0.245488i
\(885\) 0 0
\(886\) −2.76877 2.01163i −0.0930187 0.0675820i
\(887\) 4.52593 13.9294i 0.151966 0.467702i −0.845875 0.533381i \(-0.820921\pi\)
0.997841 + 0.0656786i \(0.0209212\pi\)
\(888\) 0.251848 + 0.775108i 0.00845146 + 0.0260109i
\(889\) −72.3396 + 52.5578i −2.42619 + 1.76273i
\(890\) 0 0
\(891\) −8.24400 17.1364i −0.276184 0.574089i
\(892\) 9.71637 0.325328
\(893\) 34.0882 24.7665i 1.14072 0.828780i
\(894\) −0.734651 2.26102i −0.0245704 0.0756199i
\(895\) 0 0
\(896\) 10.8337 + 7.87116i 0.361929 + 0.262957i
\(897\) 7.39246 + 5.37094i 0.246827 + 0.179330i
\(898\) 0.479760 1.47655i 0.0160098 0.0492731i
\(899\) 1.83782 + 5.65622i 0.0612946 + 0.188645i
\(900\) 0 0
\(901\) −4.85662 −0.161798
\(902\) 0.537016 0.0725252i 0.0178807 0.00241483i
\(903\) 1.74561 0.0580903
\(904\) −3.59382 + 2.61107i −0.119529 + 0.0868428i
\(905\) 0 0
\(906\) −0.000229044 0 0.000704924i −7.60946e−6 0 2.34195e-5i
\(907\) 23.2552 + 16.8959i 0.772175 + 0.561018i 0.902620 0.430437i \(-0.141641\pi\)
−0.130445 + 0.991456i \(0.541641\pi\)
\(908\) −26.2955 19.1048i −0.872645 0.634014i
\(909\) 2.44821 7.53482i 0.0812020 0.249914i
\(910\) 0 0
\(911\) −13.9813 + 10.1580i −0.463222 + 0.336550i −0.794794 0.606880i \(-0.792421\pi\)
0.331572 + 0.943430i \(0.392421\pi\)
\(912\) −35.2313 −1.16663
\(913\) −14.7277 + 1.98901i −0.487416 + 0.0658266i
\(914\) −2.96102 −0.0979418
\(915\) 0 0
\(916\) 2.97308 + 9.15020i 0.0982333 + 0.302331i
\(917\) 2.70513 8.32554i 0.0893313 0.274933i
\(918\) −1.44054 1.04661i −0.0475448 0.0345433i
\(919\) 1.77859 + 1.29222i 0.0586701 + 0.0426263i 0.616734 0.787172i \(-0.288456\pi\)
−0.558064 + 0.829798i \(0.688456\pi\)
\(920\) 0 0
\(921\) 12.3212 + 37.9208i 0.405997 + 1.24953i
\(922\) −1.92419 + 1.39801i −0.0633699 + 0.0460409i
\(923\) −12.2600 −0.403542
\(924\) −19.0003 39.4948i −0.625063 1.29928i
\(925\) 0 0
\(926\) 1.23552 0.897661i 0.0406019 0.0294990i
\(927\) −3.64963 11.2324i −0.119870 0.368921i
\(928\) −1.14481 + 3.52335i −0.0375801 + 0.115660i
\(929\) −19.5866 14.2305i −0.642616 0.466888i 0.218132 0.975919i \(-0.430004\pi\)
−0.860748 + 0.509031i \(0.830004\pi\)
\(930\) 0 0
\(931\) 25.3301 77.9579i 0.830159 2.55497i
\(932\) −5.18094 15.9453i −0.169707 0.522305i
\(933\) −15.6621 + 11.3792i −0.512754 + 0.372538i
\(934\) 0.797556 0.0260968
\(935\) 0 0
\(936\) −0.361908 −0.0118293
\(937\) −16.8459 + 12.2393i −0.550333 + 0.399840i −0.827908 0.560864i \(-0.810469\pi\)
0.277575 + 0.960704i \(0.410469\pi\)
\(938\) 0.0675407 + 0.207869i 0.00220528 + 0.00678716i
\(939\) 7.32984 22.5589i 0.239200 0.736183i
\(940\) 0 0
\(941\) −27.6787 20.1098i −0.902301 0.655560i 0.0367552 0.999324i \(-0.488298\pi\)
−0.939056 + 0.343764i \(0.888298\pi\)
\(942\) −0.0235156 + 0.0723736i −0.000766180 + 0.00235806i
\(943\) −2.94403 9.06080i −0.0958709 0.295060i
\(944\) 22.5733 16.4004i 0.734697 0.533789i
\(945\) 0 0
\(946\) −0.0145986 + 0.0802621i −0.000474640 + 0.00260955i
\(947\) −33.8128 −1.09877 −0.549383 0.835570i \(-0.685137\pi\)
−0.549383 + 0.835570i \(0.685137\pi\)
\(948\) 26.7081 19.4045i 0.867438 0.630230i
\(949\) 2.00587 + 6.17344i 0.0651133 + 0.200398i
\(950\) 0 0
\(951\) 6.38533 + 4.63921i 0.207058 + 0.150437i
\(952\) −4.60832 3.34814i −0.149356 0.108514i
\(953\) −7.91027 + 24.3453i −0.256239 + 0.788622i 0.737344 + 0.675517i \(0.236080\pi\)
−0.993583 + 0.113105i \(0.963920\pi\)
\(954\) 0.0353088 + 0.108669i 0.00114316 + 0.00351830i
\(955\) 0 0
\(956\) 45.1871 1.46146
\(957\) 11.6809 11.1591i 0.377589 0.360723i
\(958\) −2.80042 −0.0904774
\(959\) 45.8845 33.3371i 1.48169 1.07651i
\(960\) 0 0
\(961\) −8.58840 + 26.4324i −0.277045 + 0.852658i
\(962\) −0.128686 0.0934959i −0.00414901 0.00301443i
\(963\) 11.5270 + 8.37488i 0.371454 + 0.269877i
\(964\) −7.14182 + 21.9803i −0.230023 + 0.707937i
\(965\) 0 0
\(966\) 2.73742 1.98885i 0.0880750 0.0639902i
\(967\) −43.8942 −1.41154 −0.705772 0.708439i \(-0.749400\pi\)
−0.705772 + 0.708439i \(0.749400\pi\)
\(968\) 3.95836 1.08904i 0.127227 0.0350029i
\(969\) 30.1051 0.967114
\(970\) 0 0
\(971\) 11.2392 + 34.5906i 0.360682 + 1.11006i 0.952641 + 0.304097i \(0.0983547\pi\)
−0.591959 + 0.805968i \(0.701645\pi\)
\(972\) 5.24591 16.1453i 0.168263 0.517860i
\(973\) −41.1616 29.9056i −1.31958 0.958730i
\(974\) 1.48299 + 1.07746i 0.0475182 + 0.0345240i
\(975\) 0 0
\(976\) 3.05269 + 9.39520i 0.0977141 + 0.300733i
\(977\) 8.37462 6.08452i 0.267928 0.194661i −0.445707 0.895179i \(-0.647048\pi\)
0.713635 + 0.700518i \(0.247048\pi\)
\(978\) 1.09233 0.0349289
\(979\) −31.8178 + 30.3966i −1.01690 + 0.971481i
\(980\) 0 0
\(981\) −2.50814 + 1.82227i −0.0800789 + 0.0581807i
\(982\) 0.456245 + 1.40418i 0.0145594 + 0.0448091i
\(983\) 6.83416 21.0334i 0.217976 0.670861i −0.780953 0.624590i \(-0.785266\pi\)
0.998929 0.0462712i \(-0.0147338\pi\)
\(984\) −0.773808 0.562205i −0.0246681 0.0179224i
\(985\) 0 0
\(986\) 0.323692 0.996222i 0.0103085 0.0317262i
\(987\) −14.2006 43.7051i −0.452012 1.39115i
\(988\) 11.1997 8.13707i 0.356310 0.258875i
\(989\) 1.43426 0.0456067
\(990\) 0 0
\(991\) −55.5911 −1.76591 −0.882955 0.469457i \(-0.844450\pi\)
−0.882955 + 0.469457i \(0.844450\pi\)
\(992\) 1.61634 1.17434i 0.0513189 0.0372853i
\(993\) 8.41687 + 25.9044i 0.267101 + 0.822053i
\(994\) −1.40289 + 4.31765i −0.0444970 + 0.136948i
\(995\) 0 0
\(996\) 10.5876 + 7.69236i 0.335482 + 0.243742i
\(997\) −3.33465 + 10.2630i −0.105609 + 0.325032i −0.989873 0.141956i \(-0.954661\pi\)
0.884264 + 0.466988i \(0.154661\pi\)
\(998\) −0.323872 0.996775i −0.0102520 0.0315524i
\(999\) 6.79924 4.93994i 0.215118 0.156293i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.b.201.1 8
5.2 odd 4 275.2.z.b.124.3 16
5.3 odd 4 275.2.z.b.124.2 16
5.4 even 2 55.2.g.a.36.2 yes 8
11.2 odd 10 3025.2.a.be.1.2 4
11.4 even 5 inner 275.2.h.b.26.1 8
11.9 even 5 3025.2.a.v.1.3 4
15.14 odd 2 495.2.n.f.91.1 8
20.19 odd 2 880.2.bo.e.641.1 8
55.4 even 10 55.2.g.a.26.2 8
55.9 even 10 605.2.a.l.1.2 4
55.14 even 10 605.2.g.j.511.1 8
55.19 odd 10 605.2.g.g.511.2 8
55.24 odd 10 605.2.a.i.1.3 4
55.29 odd 10 605.2.g.n.81.1 8
55.37 odd 20 275.2.z.b.224.2 16
55.39 odd 10 605.2.g.g.251.2 8
55.48 odd 20 275.2.z.b.224.3 16
55.49 even 10 605.2.g.j.251.1 8
55.54 odd 2 605.2.g.n.366.1 8
165.59 odd 10 495.2.n.f.136.1 8
165.119 odd 10 5445.2.a.bg.1.3 4
165.134 even 10 5445.2.a.bu.1.2 4
220.59 odd 10 880.2.bo.e.81.1 8
220.79 even 10 9680.2.a.cv.1.1 4
220.119 odd 10 9680.2.a.cs.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.a.26.2 8 55.4 even 10
55.2.g.a.36.2 yes 8 5.4 even 2
275.2.h.b.26.1 8 11.4 even 5 inner
275.2.h.b.201.1 8 1.1 even 1 trivial
275.2.z.b.124.2 16 5.3 odd 4
275.2.z.b.124.3 16 5.2 odd 4
275.2.z.b.224.2 16 55.37 odd 20
275.2.z.b.224.3 16 55.48 odd 20
495.2.n.f.91.1 8 15.14 odd 2
495.2.n.f.136.1 8 165.59 odd 10
605.2.a.i.1.3 4 55.24 odd 10
605.2.a.l.1.2 4 55.9 even 10
605.2.g.g.251.2 8 55.39 odd 10
605.2.g.g.511.2 8 55.19 odd 10
605.2.g.j.251.1 8 55.49 even 10
605.2.g.j.511.1 8 55.14 even 10
605.2.g.n.81.1 8 55.29 odd 10
605.2.g.n.366.1 8 55.54 odd 2
880.2.bo.e.81.1 8 220.59 odd 10
880.2.bo.e.641.1 8 20.19 odd 2
3025.2.a.v.1.3 4 11.9 even 5
3025.2.a.be.1.2 4 11.2 odd 10
5445.2.a.bg.1.3 4 165.119 odd 10
5445.2.a.bu.1.2 4 165.134 even 10
9680.2.a.cs.1.1 4 220.119 odd 10
9680.2.a.cv.1.1 4 220.79 even 10