L(s) = 1 | + (−0.796 − 1.09i)2-s + (0.547 − 0.177i)3-s + (0.0501 − 0.154i)4-s + (−0.631 − 0.458i)6-s + (−3.47 − 1.12i)7-s + (−2.78 + 0.905i)8-s + (−2.15 + 1.56i)9-s + (0.490 − 3.28i)11-s − 0.0933i·12-s + (−1.66 − 2.29i)13-s + (1.52 + 4.70i)14-s + (2.95 + 2.14i)16-s + (2.17 − 2.98i)17-s + (3.44 + 1.11i)18-s + (0.0293 + 0.0904i)19-s + ⋯ |
L(s) = 1 | + (−0.563 − 0.775i)2-s + (0.315 − 0.102i)3-s + (0.0250 − 0.0771i)4-s + (−0.257 − 0.187i)6-s + (−1.31 − 0.426i)7-s + (−0.985 + 0.320i)8-s + (−0.719 + 0.522i)9-s + (0.147 − 0.989i)11-s − 0.0269i·12-s + (−0.461 − 0.635i)13-s + (0.408 + 1.25i)14-s + (0.738 + 0.536i)16-s + (0.526 − 0.724i)17-s + (0.811 + 0.263i)18-s + (0.00674 + 0.0207i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.00747i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.00747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00220525 + 0.589733i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00220525 + 0.589733i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-0.490 + 3.28i)T \) |
good | 2 | \( 1 + (0.796 + 1.09i)T + (-0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.547 + 0.177i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (3.47 + 1.12i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.66 + 2.29i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.17 + 2.98i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.0293 - 0.0904i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.16iT - 23T^{2} \) |
| 29 | \( 1 + (-2.08 + 6.42i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.48 - 3.98i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-9.35 - 3.04i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.57 + 7.91i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.96iT - 43T^{2} \) |
| 47 | \( 1 + (-2.11 + 0.687i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.75 - 2.42i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.62 + 8.09i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.86 - 4.98i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 13.4iT - 67T^{2} \) |
| 71 | \( 1 + (6.71 + 4.88i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.25 - 0.407i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (11.2 - 8.15i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.25 + 8.61i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 12.1T + 89T^{2} \) |
| 97 | \( 1 + (-2.54 - 3.50i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25104920699014024535628216758, −10.40405986410559247905616987515, −9.651096649309886949928050708379, −8.811581589301565221043529469843, −7.74288048987982410470951713297, −6.37246817162784364028072001615, −5.44684792965018424306070369826, −3.39015195240389787076391756768, −2.60968400459934197277580531358, −0.48841012474344612065538495176,
2.71242486204635727632737602712, 3.83918975035262543886545957142, 5.74514001317296683980044063716, 6.60167059692584976616638858581, 7.44577066797481361968739535936, 8.629171223179739624400898301589, 9.367438909596232677706429556098, 9.928968616179725986163965310340, 11.61269928707709450967740524061, 12.41321062034327102830982866588