L(s) = 1 | + (−0.796 − 1.09i)2-s + (0.547 − 0.177i)3-s + (0.0501 − 0.154i)4-s + (−0.631 − 0.458i)6-s + (−3.47 − 1.12i)7-s + (−2.78 + 0.905i)8-s + (−2.15 + 1.56i)9-s + (0.490 − 3.28i)11-s − 0.0933i·12-s + (−1.66 − 2.29i)13-s + (1.52 + 4.70i)14-s + (2.95 + 2.14i)16-s + (2.17 − 2.98i)17-s + (3.44 + 1.11i)18-s + (0.0293 + 0.0904i)19-s + ⋯ |
L(s) = 1 | + (−0.563 − 0.775i)2-s + (0.315 − 0.102i)3-s + (0.0250 − 0.0771i)4-s + (−0.257 − 0.187i)6-s + (−1.31 − 0.426i)7-s + (−0.985 + 0.320i)8-s + (−0.719 + 0.522i)9-s + (0.147 − 0.989i)11-s − 0.0269i·12-s + (−0.461 − 0.635i)13-s + (0.408 + 1.25i)14-s + (0.738 + 0.536i)16-s + (0.526 − 0.724i)17-s + (0.811 + 0.263i)18-s + (0.00674 + 0.0207i)19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.999−0.00747i)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)(−0.999−0.00747i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.999−0.00747i
|
Analytic conductor: |
2.19588 |
Root analytic conductor: |
1.48185 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :1/2), −0.999−0.00747i)
|
Particular Values
L(1) |
≈ |
0.00220525+0.589733i |
L(21) |
≈ |
0.00220525+0.589733i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+(−0.490+3.28i)T |
good | 2 | 1+(0.796+1.09i)T+(−0.618+1.90i)T2 |
| 3 | 1+(−0.547+0.177i)T+(2.42−1.76i)T2 |
| 7 | 1+(3.47+1.12i)T+(5.66+4.11i)T2 |
| 13 | 1+(1.66+2.29i)T+(−4.01+12.3i)T2 |
| 17 | 1+(−2.17+2.98i)T+(−5.25−16.1i)T2 |
| 19 | 1+(−0.0293−0.0904i)T+(−15.3+11.1i)T2 |
| 23 | 1+1.16iT−23T2 |
| 29 | 1+(−2.08+6.42i)T+(−23.4−17.0i)T2 |
| 31 | 1+(5.48−3.98i)T+(9.57−29.4i)T2 |
| 37 | 1+(−9.35−3.04i)T+(29.9+21.7i)T2 |
| 41 | 1+(2.57+7.91i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.96iT−43T2 |
| 47 | 1+(−2.11+0.687i)T+(38.0−27.6i)T2 |
| 53 | 1+(−1.75−2.42i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−2.62+8.09i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−6.86−4.98i)T+(18.8+58.0i)T2 |
| 67 | 1+13.4iT−67T2 |
| 71 | 1+(6.71+4.88i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.25−0.407i)T+(59.0+42.9i)T2 |
| 79 | 1+(11.2−8.15i)T+(24.4−75.1i)T2 |
| 83 | 1+(−6.25+8.61i)T+(−25.6−78.9i)T2 |
| 89 | 1−12.1T+89T2 |
| 97 | 1+(−2.54−3.50i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25104920699014024535628216758, −10.40405986410559247905616987515, −9.651096649309886949928050708379, −8.811581589301565221043529469843, −7.74288048987982410470951713297, −6.37246817162784364028072001615, −5.44684792965018424306070369826, −3.39015195240389787076391756768, −2.60968400459934197277580531358, −0.48841012474344612065538495176,
2.71242486204635727632737602712, 3.83918975035262543886545957142, 5.74514001317296683980044063716, 6.60167059692584976616638858581, 7.44577066797481361968739535936, 8.629171223179739624400898301589, 9.367438909596232677706429556098, 9.928968616179725986163965310340, 11.61269928707709450967740524061, 12.41321062034327102830982866588