Properties

Label 275.2.z.a.124.1
Level $275$
Weight $2$
Character 275.124
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(49,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.11316496000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + 15x^{12} - 59x^{10} + 104x^{8} - 59x^{6} + 15x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.1
Root \(-1.28932 - 0.418926i\) of defining polynomial
Character \(\chi\) \(=\) 275.124
Dual form 275.2.z.a.224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.796845 - 1.09676i) q^{2} +(0.547326 - 0.177837i) q^{3} +(0.0501062 - 0.154211i) q^{4} +(-0.631180 - 0.458579i) q^{6} +(-3.47080 - 1.12773i) q^{7} +(-2.78771 + 0.905781i) q^{8} +(-2.15911 + 1.56869i) q^{9} +(0.490303 - 3.28018i) q^{11} -0.0933146i q^{12} +(-1.66399 - 2.29029i) q^{13} +(1.52884 + 4.70527i) q^{14} +(2.95244 + 2.14507i) q^{16} +(2.17008 - 2.98685i) q^{17} +(3.44095 + 1.11803i) q^{18} +(0.0293950 + 0.0904686i) q^{19} -2.10021 q^{21} +(-3.98828 + 2.07605i) q^{22} -1.16215i q^{23} +(-1.36470 + 0.991515i) q^{24} +(-1.18596 + 3.65001i) q^{26} +(-1.91757 + 2.63930i) q^{27} +(-0.347817 + 0.478730i) q^{28} +(2.08707 - 6.42333i) q^{29} +(-5.48382 + 3.98423i) q^{31} +0.914918i q^{32} +(-0.314983 - 1.88253i) q^{33} -5.00509 q^{34} +(0.133724 + 0.411560i) q^{36} +(9.35820 + 3.04066i) q^{37} +(0.0757994 - 0.104329i) q^{38} +(-1.31805 - 0.957617i) q^{39} +(-2.57047 - 7.91110i) q^{41} +(1.67354 + 2.30344i) q^{42} +2.96862i q^{43} +(-0.481274 - 0.239968i) q^{44} +(-1.27460 + 0.926052i) q^{46} +(2.11601 - 0.687534i) q^{47} +(1.99742 + 0.649001i) q^{48} +(5.11155 + 3.71376i) q^{49} +(0.656567 - 2.02070i) q^{51} +(-0.436565 + 0.141849i) q^{52} +(1.75979 + 2.42214i) q^{53} +4.42270 q^{54} +10.6970 q^{56} +(0.0321774 + 0.0442883i) q^{57} +(-8.70794 + 2.82938i) q^{58} +(2.62930 - 8.09216i) q^{59} +(6.86076 + 4.98464i) q^{61} +(8.73951 + 2.83964i) q^{62} +(9.26289 - 3.00970i) q^{63} +(6.90832 - 5.01919i) q^{64} +(-1.81369 + 1.84554i) q^{66} -13.4153i q^{67} +(-0.351872 - 0.484310i) q^{68} +(-0.206673 - 0.636074i) q^{69} +(-6.71734 - 4.88043i) q^{71} +(4.59808 - 6.32872i) q^{72} +(1.25542 + 0.407912i) q^{73} +(-4.12215 - 12.6867i) q^{74} +0.0154241 q^{76} +(-5.40091 + 10.8319i) q^{77} +2.20866i q^{78} +(-11.2179 + 8.15028i) q^{79} +(1.89395 - 5.82899i) q^{81} +(-6.62834 + 9.12312i) q^{82} +(6.25666 - 8.61155i) q^{83} +(-0.105234 + 0.323876i) q^{84} +(3.25587 - 2.36553i) q^{86} -3.88682i q^{87} +(1.60431 + 9.58829i) q^{88} +12.1612 q^{89} +(3.19256 + 9.82567i) q^{91} +(-0.179216 - 0.0582308i) q^{92} +(-2.29290 + 3.15590i) q^{93} +(-2.44020 - 1.77291i) q^{94} +(0.162706 + 0.500759i) q^{96} +(2.54589 + 3.50412i) q^{97} -8.56545i q^{98} +(4.08696 + 7.85141i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 14 q^{6} + 10 q^{9} + 6 q^{11} + 32 q^{14} + 8 q^{16} - 30 q^{19} - 40 q^{21} - 26 q^{24} + 20 q^{26} + 18 q^{29} - 20 q^{31} - 8 q^{34} - 30 q^{36} - 42 q^{39} + 16 q^{41} + 24 q^{44}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.796845 1.09676i −0.563455 0.775529i 0.428306 0.903634i \(-0.359111\pi\)
−0.991761 + 0.128105i \(0.959111\pi\)
\(3\) 0.547326 0.177837i 0.315999 0.102674i −0.146723 0.989178i \(-0.546873\pi\)
0.462722 + 0.886503i \(0.346873\pi\)
\(4\) 0.0501062 0.154211i 0.0250531 0.0771056i
\(5\) 0 0
\(6\) −0.631180 0.458579i −0.257678 0.187214i
\(7\) −3.47080 1.12773i −1.31184 0.426242i −0.432154 0.901800i \(-0.642246\pi\)
−0.879685 + 0.475558i \(0.842246\pi\)
\(8\) −2.78771 + 0.905781i −0.985603 + 0.320242i
\(9\) −2.15911 + 1.56869i −0.719704 + 0.522895i
\(10\) 0 0
\(11\) 0.490303 3.28018i 0.147832 0.989012i
\(12\) 0.0933146i 0.0269376i
\(13\) −1.66399 2.29029i −0.461509 0.635212i 0.513312 0.858202i \(-0.328418\pi\)
−0.974821 + 0.222990i \(0.928418\pi\)
\(14\) 1.52884 + 4.70527i 0.408599 + 1.25754i
\(15\) 0 0
\(16\) 2.95244 + 2.14507i 0.738109 + 0.536268i
\(17\) 2.17008 2.98685i 0.526321 0.724419i −0.460243 0.887793i \(-0.652238\pi\)
0.986564 + 0.163374i \(0.0522378\pi\)
\(18\) 3.44095 + 1.11803i 0.811041 + 0.263523i
\(19\) 0.0293950 + 0.0904686i 0.00674368 + 0.0207549i 0.954372 0.298621i \(-0.0965267\pi\)
−0.947628 + 0.319376i \(0.896527\pi\)
\(20\) 0 0
\(21\) −2.10021 −0.458304
\(22\) −3.98828 + 2.07605i −0.850304 + 0.442616i
\(23\) 1.16215i 0.242324i −0.992633 0.121162i \(-0.961338\pi\)
0.992633 0.121162i \(-0.0386621\pi\)
\(24\) −1.36470 + 0.991515i −0.278569 + 0.202392i
\(25\) 0 0
\(26\) −1.18596 + 3.65001i −0.232586 + 0.715827i
\(27\) −1.91757 + 2.63930i −0.369036 + 0.507934i
\(28\) −0.347817 + 0.478730i −0.0657313 + 0.0904714i
\(29\) 2.08707 6.42333i 0.387559 1.19278i −0.547049 0.837101i \(-0.684249\pi\)
0.934607 0.355682i \(-0.115751\pi\)
\(30\) 0 0
\(31\) −5.48382 + 3.98423i −0.984923 + 0.715588i −0.958803 0.284071i \(-0.908315\pi\)
−0.0261194 + 0.999659i \(0.508315\pi\)
\(32\) 0.914918i 0.161736i
\(33\) −0.314983 1.88253i −0.0548314 0.327706i
\(34\) −5.00509 −0.858366
\(35\) 0 0
\(36\) 0.133724 + 0.411560i 0.0222873 + 0.0685933i
\(37\) 9.35820 + 3.04066i 1.53848 + 0.499882i 0.950956 0.309326i \(-0.100103\pi\)
0.587523 + 0.809208i \(0.300103\pi\)
\(38\) 0.0757994 0.104329i 0.0122963 0.0169244i
\(39\) −1.31805 0.957617i −0.211056 0.153341i
\(40\) 0 0
\(41\) −2.57047 7.91110i −0.401440 1.23551i −0.923831 0.382800i \(-0.874960\pi\)
0.522391 0.852706i \(-0.325040\pi\)
\(42\) 1.67354 + 2.30344i 0.258234 + 0.355428i
\(43\) 2.96862i 0.452710i 0.974045 + 0.226355i \(0.0726810\pi\)
−0.974045 + 0.226355i \(0.927319\pi\)
\(44\) −0.481274 0.239968i −0.0725547 0.0361765i
\(45\) 0 0
\(46\) −1.27460 + 0.926052i −0.187930 + 0.136539i
\(47\) 2.11601 0.687534i 0.308652 0.100287i −0.150595 0.988595i \(-0.548119\pi\)
0.459248 + 0.888308i \(0.348119\pi\)
\(48\) 1.99742 + 0.649001i 0.288303 + 0.0936753i
\(49\) 5.11155 + 3.71376i 0.730221 + 0.530537i
\(50\) 0 0
\(51\) 0.656567 2.02070i 0.0919377 0.282955i
\(52\) −0.436565 + 0.141849i −0.0605407 + 0.0196708i
\(53\) 1.75979 + 2.42214i 0.241725 + 0.332706i 0.912592 0.408872i \(-0.134078\pi\)
−0.670867 + 0.741578i \(0.734078\pi\)
\(54\) 4.42270 0.601853
\(55\) 0 0
\(56\) 10.6970 1.42945
\(57\) 0.0321774 + 0.0442883i 0.00426200 + 0.00586613i
\(58\) −8.70794 + 2.82938i −1.14341 + 0.371516i
\(59\) 2.62930 8.09216i 0.342306 1.05351i −0.620704 0.784045i \(-0.713153\pi\)
0.963010 0.269465i \(-0.0868468\pi\)
\(60\) 0 0
\(61\) 6.86076 + 4.98464i 0.878431 + 0.638217i 0.932836 0.360302i \(-0.117326\pi\)
−0.0544052 + 0.998519i \(0.517326\pi\)
\(62\) 8.73951 + 2.83964i 1.10992 + 0.360634i
\(63\) 9.26289 3.00970i 1.16702 0.379186i
\(64\) 6.90832 5.01919i 0.863541 0.627399i
\(65\) 0 0
\(66\) −1.81369 + 1.84554i −0.223250 + 0.227171i
\(67\) 13.4153i 1.63894i −0.573123 0.819469i \(-0.694268\pi\)
0.573123 0.819469i \(-0.305732\pi\)
\(68\) −0.351872 0.484310i −0.0426707 0.0587312i
\(69\) −0.206673 0.636074i −0.0248805 0.0765743i
\(70\) 0 0
\(71\) −6.71734 4.88043i −0.797202 0.579201i 0.112890 0.993607i \(-0.463989\pi\)
−0.910092 + 0.414406i \(0.863989\pi\)
\(72\) 4.59808 6.32872i 0.541889 0.745846i
\(73\) 1.25542 + 0.407912i 0.146936 + 0.0477425i 0.381562 0.924343i \(-0.375386\pi\)
−0.234625 + 0.972086i \(0.575386\pi\)
\(74\) −4.12215 12.6867i −0.479190 1.47480i
\(75\) 0 0
\(76\) 0.0154241 0.00176927
\(77\) −5.40091 + 10.8319i −0.615491 + 1.23441i
\(78\) 2.20866i 0.250081i
\(79\) −11.2179 + 8.15028i −1.26211 + 0.916978i −0.998859 0.0477484i \(-0.984795\pi\)
−0.263253 + 0.964727i \(0.584795\pi\)
\(80\) 0 0
\(81\) 1.89395 5.82899i 0.210439 0.647665i
\(82\) −6.62834 + 9.12312i −0.731977 + 1.00748i
\(83\) 6.25666 8.61155i 0.686757 0.945240i −0.313233 0.949676i \(-0.601412\pi\)
0.999990 + 0.00443607i \(0.00141205\pi\)
\(84\) −0.105234 + 0.323876i −0.0114819 + 0.0353378i
\(85\) 0 0
\(86\) 3.25587 2.36553i 0.351090 0.255082i
\(87\) 3.88682i 0.416710i
\(88\) 1.60431 + 9.58829i 0.171020 + 1.02212i
\(89\) 12.1612 1.28908 0.644540 0.764570i \(-0.277049\pi\)
0.644540 + 0.764570i \(0.277049\pi\)
\(90\) 0 0
\(91\) 3.19256 + 9.82567i 0.334671 + 1.03001i
\(92\) −0.179216 0.0582308i −0.0186846 0.00607098i
\(93\) −2.29290 + 3.15590i −0.237762 + 0.327252i
\(94\) −2.44020 1.77291i −0.251687 0.182861i
\(95\) 0 0
\(96\) 0.162706 + 0.500759i 0.0166062 + 0.0511085i
\(97\) 2.54589 + 3.50412i 0.258496 + 0.355789i 0.918464 0.395504i \(-0.129430\pi\)
−0.659968 + 0.751294i \(0.729430\pi\)
\(98\) 8.56545i 0.865241i
\(99\) 4.08696 + 7.85141i 0.410755 + 0.789096i
\(100\) 0 0
\(101\) −8.01388 + 5.82242i −0.797411 + 0.579353i −0.910153 0.414271i \(-0.864036\pi\)
0.112743 + 0.993624i \(0.464036\pi\)
\(102\) −2.73942 + 0.890091i −0.271243 + 0.0881321i
\(103\) −3.86690 1.25643i −0.381017 0.123800i 0.112245 0.993681i \(-0.464196\pi\)
−0.493263 + 0.869880i \(0.664196\pi\)
\(104\) 6.71323 + 4.87744i 0.658286 + 0.478273i
\(105\) 0 0
\(106\) 1.25424 3.86014i 0.121822 0.374930i
\(107\) −1.84369 + 0.599053i −0.178237 + 0.0579126i −0.396776 0.917916i \(-0.629871\pi\)
0.218539 + 0.975828i \(0.429871\pi\)
\(108\) 0.310928 + 0.427956i 0.0299191 + 0.0411801i
\(109\) −6.12664 −0.586825 −0.293413 0.955986i \(-0.594791\pi\)
−0.293413 + 0.955986i \(0.594791\pi\)
\(110\) 0 0
\(111\) 5.66273 0.537483
\(112\) −7.82825 10.7747i −0.739700 1.01811i
\(113\) 5.50212 1.78775i 0.517596 0.168177i −0.0385582 0.999256i \(-0.512276\pi\)
0.556154 + 0.831079i \(0.312276\pi\)
\(114\) 0.0229335 0.0705819i 0.00214791 0.00661060i
\(115\) 0 0
\(116\) −0.885974 0.643698i −0.0822606 0.0597659i
\(117\) 7.18549 + 2.33471i 0.664299 + 0.215844i
\(118\) −10.9703 + 3.56448i −1.00990 + 0.328137i
\(119\) −10.9003 + 7.91951i −0.999226 + 0.725980i
\(120\) 0 0
\(121\) −10.5192 3.21657i −0.956291 0.292415i
\(122\) 11.4966i 1.04085i
\(123\) −2.81377 3.87283i −0.253710 0.349201i
\(124\) 0.339639 + 1.04530i 0.0305005 + 0.0938708i
\(125\) 0 0
\(126\) −10.6820 7.76094i −0.951630 0.691400i
\(127\) 1.43292 1.97224i 0.127151 0.175008i −0.740695 0.671841i \(-0.765504\pi\)
0.867846 + 0.496833i \(0.165504\pi\)
\(128\) −9.26945 3.01183i −0.819312 0.266211i
\(129\) 0.527931 + 1.62480i 0.0464817 + 0.143056i
\(130\) 0 0
\(131\) 7.04156 0.615224 0.307612 0.951512i \(-0.400470\pi\)
0.307612 + 0.951512i \(0.400470\pi\)
\(132\) −0.306089 0.0457524i −0.0266416 0.00398224i
\(133\) 0.347148i 0.0301016i
\(134\) −14.7134 + 10.6899i −1.27104 + 0.923468i
\(135\) 0 0
\(136\) −3.34410 + 10.2921i −0.286754 + 0.882539i
\(137\) −5.62678 + 7.74461i −0.480729 + 0.661666i −0.978645 0.205559i \(-0.934099\pi\)
0.497916 + 0.867225i \(0.334099\pi\)
\(138\) −0.532936 + 0.733524i −0.0453666 + 0.0624417i
\(139\) −0.159299 + 0.490271i −0.0135116 + 0.0415843i −0.957585 0.288151i \(-0.906959\pi\)
0.944073 + 0.329735i \(0.106959\pi\)
\(140\) 0 0
\(141\) 1.03588 0.752611i 0.0872369 0.0633813i
\(142\) 11.2563i 0.944607i
\(143\) −8.32843 + 4.33527i −0.696459 + 0.362533i
\(144\) −9.73958 −0.811632
\(145\) 0 0
\(146\) −0.552996 1.70195i −0.0457663 0.140854i
\(147\) 3.45813 + 1.12361i 0.285222 + 0.0926742i
\(148\) 0.937809 1.29078i 0.0770874 0.106102i
\(149\) −6.60144 4.79623i −0.540811 0.392922i 0.283575 0.958950i \(-0.408479\pi\)
−0.824386 + 0.566028i \(0.808479\pi\)
\(150\) 0 0
\(151\) 0.599563 + 1.84526i 0.0487917 + 0.150165i 0.972484 0.232970i \(-0.0748443\pi\)
−0.923692 + 0.383135i \(0.874844\pi\)
\(152\) −0.163889 0.225574i −0.0132932 0.0182965i
\(153\) 9.85312i 0.796577i
\(154\) 16.1838 2.70785i 1.30412 0.218205i
\(155\) 0 0
\(156\) −0.213718 + 0.155275i −0.0171111 + 0.0124319i
\(157\) −20.2332 + 6.57418i −1.61479 + 0.524676i −0.970704 0.240279i \(-0.922761\pi\)
−0.644084 + 0.764955i \(0.722761\pi\)
\(158\) 17.8779 + 5.80887i 1.42229 + 0.462129i
\(159\) 1.39392 + 1.01274i 0.110545 + 0.0803159i
\(160\) 0 0
\(161\) −1.31059 + 4.03358i −0.103289 + 0.317891i
\(162\) −7.90221 + 2.56758i −0.620856 + 0.201728i
\(163\) −9.39337 12.9289i −0.735746 1.01267i −0.998852 0.0479001i \(-0.984747\pi\)
0.263107 0.964767i \(-0.415253\pi\)
\(164\) −1.34878 −0.105322
\(165\) 0 0
\(166\) −14.4304 −1.12002
\(167\) −10.4091 14.3269i −0.805481 1.10865i −0.992005 0.126199i \(-0.959722\pi\)
0.186524 0.982450i \(-0.440278\pi\)
\(168\) 5.85477 1.90233i 0.451706 0.146768i
\(169\) 1.54066 4.74168i 0.118513 0.364744i
\(170\) 0 0
\(171\) −0.205384 0.149220i −0.0157061 0.0114112i
\(172\) 0.457794 + 0.148746i 0.0349065 + 0.0113418i
\(173\) 15.1080 4.90888i 1.14864 0.373216i 0.328009 0.944675i \(-0.393622\pi\)
0.820631 + 0.571459i \(0.193622\pi\)
\(174\) −4.26292 + 3.09719i −0.323171 + 0.234798i
\(175\) 0 0
\(176\) 8.48382 8.63280i 0.639492 0.650722i
\(177\) 4.89664i 0.368054i
\(178\) −9.69057 13.3379i −0.726339 0.999719i
\(179\) 5.21653 + 16.0548i 0.389902 + 1.19999i 0.932862 + 0.360235i \(0.117304\pi\)
−0.542960 + 0.839759i \(0.682696\pi\)
\(180\) 0 0
\(181\) 19.4871 + 14.1582i 1.44846 + 1.05237i 0.986187 + 0.165636i \(0.0529676\pi\)
0.462277 + 0.886735i \(0.347032\pi\)
\(182\) 8.23247 11.3310i 0.610231 0.839911i
\(183\) 4.64153 + 1.50812i 0.343112 + 0.111484i
\(184\) 1.05265 + 3.23972i 0.0776024 + 0.238836i
\(185\) 0 0
\(186\) 5.28836 0.387761
\(187\) −8.73343 8.58271i −0.638652 0.627630i
\(188\) 0.360762i 0.0263113i
\(189\) 9.63191 6.99800i 0.700619 0.509029i
\(190\) 0 0
\(191\) 1.66337 5.11934i 0.120358 0.370422i −0.872669 0.488312i \(-0.837613\pi\)
0.993027 + 0.117890i \(0.0376129\pi\)
\(192\) 2.88851 3.97569i 0.208460 0.286921i
\(193\) −10.7471 + 14.7921i −0.773593 + 1.06476i 0.222367 + 0.974963i \(0.428622\pi\)
−0.995960 + 0.0897961i \(0.971378\pi\)
\(194\) 1.81451 5.58448i 0.130274 0.400942i
\(195\) 0 0
\(196\) 0.828823 0.602175i 0.0592017 0.0430125i
\(197\) 2.64566i 0.188496i 0.995549 + 0.0942478i \(0.0300446\pi\)
−0.995549 + 0.0942478i \(0.969955\pi\)
\(198\) 5.35447 10.7388i 0.380525 0.763172i
\(199\) −6.52800 −0.462757 −0.231379 0.972864i \(-0.574324\pi\)
−0.231379 + 0.972864i \(0.574324\pi\)
\(200\) 0 0
\(201\) −2.38574 7.34254i −0.168277 0.517903i
\(202\) 12.7716 + 4.14976i 0.898610 + 0.291976i
\(203\) −14.4876 + 19.9404i −1.01683 + 1.39954i
\(204\) −0.278717 0.202500i −0.0195141 0.0141778i
\(205\) 0 0
\(206\) 1.70331 + 5.24226i 0.118676 + 0.365246i
\(207\) 1.82304 + 2.50920i 0.126710 + 0.174402i
\(208\) 10.3313i 0.716349i
\(209\) 0.311166 0.0520641i 0.0215238 0.00360135i
\(210\) 0 0
\(211\) 22.2057 16.1334i 1.52871 1.11067i 0.571752 0.820426i \(-0.306264\pi\)
0.956953 0.290243i \(-0.0937362\pi\)
\(212\) 0.461697 0.150014i 0.0317095 0.0103030i
\(213\) −4.54450 1.47660i −0.311384 0.101175i
\(214\) 2.12616 + 1.54474i 0.145341 + 0.105597i
\(215\) 0 0
\(216\) 2.95498 9.09450i 0.201061 0.618802i
\(217\) 23.5264 7.64418i 1.59707 0.518921i
\(218\) 4.88198 + 6.71947i 0.330650 + 0.455100i
\(219\) 0.759669 0.0513337
\(220\) 0 0
\(221\) −10.4518 −0.703061
\(222\) −4.51232 6.21068i −0.302847 0.416834i
\(223\) −4.83321 + 1.57040i −0.323656 + 0.105162i −0.466338 0.884606i \(-0.654427\pi\)
0.142683 + 0.989768i \(0.454427\pi\)
\(224\) 1.03178 3.17550i 0.0689388 0.212172i
\(225\) 0 0
\(226\) −6.34507 4.60997i −0.422068 0.306650i
\(227\) 3.55676 + 1.15566i 0.236071 + 0.0767040i 0.424663 0.905351i \(-0.360393\pi\)
−0.188593 + 0.982055i \(0.560393\pi\)
\(228\) 0.00844204 0.00274299i 0.000559088 0.000181659i
\(229\) 21.7821 15.8256i 1.43940 1.04578i 0.451232 0.892407i \(-0.350985\pi\)
0.988168 0.153378i \(-0.0490152\pi\)
\(230\) 0 0
\(231\) −1.02974 + 6.88908i −0.0677520 + 0.453268i
\(232\) 19.7968i 1.29972i
\(233\) 10.7663 + 14.8185i 0.705323 + 0.970794i 0.999885 + 0.0151615i \(0.00482625\pi\)
−0.294562 + 0.955632i \(0.595174\pi\)
\(234\) −3.16510 9.74119i −0.206909 0.636801i
\(235\) 0 0
\(236\) −1.11616 0.810936i −0.0726557 0.0527874i
\(237\) −4.69043 + 6.45582i −0.304676 + 0.419351i
\(238\) 17.3717 + 5.64439i 1.12604 + 0.365872i
\(239\) 3.38555 + 10.4196i 0.218993 + 0.673991i 0.998846 + 0.0480283i \(0.0152938\pi\)
−0.779853 + 0.625963i \(0.784706\pi\)
\(240\) 0 0
\(241\) −9.99444 −0.643798 −0.321899 0.946774i \(-0.604321\pi\)
−0.321899 + 0.946774i \(0.604321\pi\)
\(242\) 4.85437 + 14.1002i 0.312050 + 0.906394i
\(243\) 13.3143i 0.854110i
\(244\) 1.11245 0.808245i 0.0712175 0.0517426i
\(245\) 0 0
\(246\) −2.00543 + 6.17209i −0.127862 + 0.393518i
\(247\) 0.158286 0.217862i 0.0100715 0.0138622i
\(248\) 11.6784 16.0740i 0.741581 1.02070i
\(249\) 1.89298 5.82599i 0.119963 0.369207i
\(250\) 0 0
\(251\) −7.81303 + 5.67650i −0.493154 + 0.358297i −0.806396 0.591376i \(-0.798585\pi\)
0.313242 + 0.949673i \(0.398585\pi\)
\(252\) 1.57925i 0.0994832i
\(253\) −3.81206 0.569804i −0.239662 0.0358233i
\(254\) −3.30490 −0.207368
\(255\) 0 0
\(256\) −1.19443 3.67608i −0.0746520 0.229755i
\(257\) 9.91721 + 3.22230i 0.618618 + 0.201001i 0.601527 0.798853i \(-0.294559\pi\)
0.0170916 + 0.999854i \(0.494559\pi\)
\(258\) 1.36135 1.87373i 0.0847538 0.116654i
\(259\) −29.0514 21.1071i −1.80517 1.31153i
\(260\) 0 0
\(261\) 5.56998 + 17.1426i 0.344773 + 1.06110i
\(262\) −5.61103 7.72292i −0.346651 0.477124i
\(263\) 10.9619i 0.675937i 0.941157 + 0.337968i \(0.109740\pi\)
−0.941157 + 0.337968i \(0.890260\pi\)
\(264\) 2.58323 + 4.96262i 0.158987 + 0.305428i
\(265\) 0 0
\(266\) −0.380739 + 0.276623i −0.0233446 + 0.0169609i
\(267\) 6.65613 2.16271i 0.407348 0.132355i
\(268\) −2.06879 0.672190i −0.126371 0.0410605i
\(269\) −0.0722816 0.0525156i −0.00440708 0.00320193i 0.585580 0.810615i \(-0.300867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(270\) 0 0
\(271\) −4.14069 + 12.7437i −0.251529 + 0.774126i 0.742965 + 0.669330i \(0.233419\pi\)
−0.994494 + 0.104796i \(0.966581\pi\)
\(272\) 12.8140 4.16353i 0.776965 0.252451i
\(273\) 3.49474 + 4.81010i 0.211511 + 0.291120i
\(274\) 12.9777 0.784010
\(275\) 0 0
\(276\) −0.108445 −0.00652764
\(277\) 2.29629 + 3.16057i 0.137971 + 0.189901i 0.872411 0.488773i \(-0.162555\pi\)
−0.734440 + 0.678673i \(0.762555\pi\)
\(278\) 0.664648 0.215957i 0.0398630 0.0129523i
\(279\) 5.59017 17.2048i 0.334675 1.03002i
\(280\) 0 0
\(281\) 1.24381 + 0.903680i 0.0741994 + 0.0539090i 0.624267 0.781211i \(-0.285398\pi\)
−0.550067 + 0.835120i \(0.685398\pi\)
\(282\) −1.65087 0.536401i −0.0983081 0.0319422i
\(283\) −5.14683 + 1.67231i −0.305947 + 0.0994083i −0.457967 0.888969i \(-0.651422\pi\)
0.152020 + 0.988377i \(0.451422\pi\)
\(284\) −1.08920 + 0.791349i −0.0646320 + 0.0469579i
\(285\) 0 0
\(286\) 11.3912 + 5.67979i 0.673578 + 0.335853i
\(287\) 30.3566i 1.79190i
\(288\) −1.43522 1.97541i −0.0845711 0.116402i
\(289\) 1.04122 + 3.20456i 0.0612484 + 0.188503i
\(290\) 0 0
\(291\) 2.01659 + 1.46514i 0.118215 + 0.0858881i
\(292\) 0.125809 0.173162i 0.00736243 0.0101335i
\(293\) −10.8577 3.52789i −0.634315 0.206102i −0.0258295 0.999666i \(-0.508223\pi\)
−0.608486 + 0.793565i \(0.708223\pi\)
\(294\) −1.52326 4.68810i −0.0888381 0.273415i
\(295\) 0 0
\(296\) −28.8421 −1.67641
\(297\) 7.71721 + 7.58403i 0.447798 + 0.440070i
\(298\) 11.0621i 0.640808i
\(299\) −2.66165 + 1.93381i −0.153927 + 0.111835i
\(300\) 0 0
\(301\) 3.34780 10.3035i 0.192964 0.593883i
\(302\) 1.54606 2.12797i 0.0889657 0.122451i
\(303\) −3.35077 + 4.61193i −0.192496 + 0.264949i
\(304\) −0.107275 + 0.330157i −0.00615262 + 0.0189358i
\(305\) 0 0
\(306\) 10.8065 7.85141i 0.617769 0.448835i
\(307\) 4.25008i 0.242565i −0.992618 0.121282i \(-0.961299\pi\)
0.992618 0.121282i \(-0.0387007\pi\)
\(308\) 1.39978 + 1.37563i 0.0797601 + 0.0783836i
\(309\) −2.33990 −0.133112
\(310\) 0 0
\(311\) −5.13570 15.8061i −0.291219 0.896279i −0.984465 0.175579i \(-0.943820\pi\)
0.693247 0.720700i \(-0.256180\pi\)
\(312\) 4.54172 + 1.47569i 0.257124 + 0.0835447i
\(313\) 15.6215 21.5012i 0.882982 1.21532i −0.0926041 0.995703i \(-0.529519\pi\)
0.975586 0.219617i \(-0.0704809\pi\)
\(314\) 23.3331 + 16.9525i 1.31676 + 0.956683i
\(315\) 0 0
\(316\) 0.694778 + 2.13831i 0.0390843 + 0.120289i
\(317\) −3.40736 4.68982i −0.191376 0.263407i 0.702537 0.711648i \(-0.252051\pi\)
−0.893913 + 0.448241i \(0.852051\pi\)
\(318\) 2.33581i 0.130985i
\(319\) −20.0464 9.99534i −1.12238 0.559632i
\(320\) 0 0
\(321\) −0.902569 + 0.655755i −0.0503765 + 0.0366007i
\(322\) 5.46822 1.77673i 0.304732 0.0990134i
\(323\) 0.334006 + 0.108525i 0.0185846 + 0.00603850i
\(324\) −0.803996 0.584137i −0.0446664 0.0324521i
\(325\) 0 0
\(326\) −6.69484 + 20.6046i −0.370793 + 1.14118i
\(327\) −3.35327 + 1.08954i −0.185436 + 0.0602519i
\(328\) 14.3314 + 19.7255i 0.791321 + 1.08916i
\(329\) −8.11961 −0.447648
\(330\) 0 0
\(331\) −12.9230 −0.710311 −0.355155 0.934807i \(-0.615572\pi\)
−0.355155 + 0.934807i \(0.615572\pi\)
\(332\) −1.01450 1.39634i −0.0556779 0.0766340i
\(333\) −24.9752 + 8.11495i −1.36863 + 0.444696i
\(334\) −7.41878 + 22.8327i −0.405938 + 1.24935i
\(335\) 0 0
\(336\) −6.20075 4.50511i −0.338278 0.245774i
\(337\) 12.7303 + 4.13631i 0.693461 + 0.225319i 0.634479 0.772940i \(-0.281215\pi\)
0.0589818 + 0.998259i \(0.481215\pi\)
\(338\) −6.42817 + 2.08864i −0.349646 + 0.113607i
\(339\) 2.69353 1.95696i 0.146292 0.106288i
\(340\) 0 0
\(341\) 10.3803 + 19.9414i 0.562123 + 1.07989i
\(342\) 0.344163i 0.0186102i
\(343\) 1.46246 + 2.01291i 0.0789656 + 0.108687i
\(344\) −2.68892 8.27564i −0.144977 0.446193i
\(345\) 0 0
\(346\) −17.4226 12.6583i −0.936646 0.680513i
\(347\) −4.96619 + 6.83538i −0.266599 + 0.366942i −0.921238 0.389000i \(-0.872821\pi\)
0.654639 + 0.755942i \(0.272821\pi\)
\(348\) −0.599391 0.194754i −0.0321307 0.0104399i
\(349\) 3.21341 + 9.88987i 0.172010 + 0.529393i 0.999484 0.0321111i \(-0.0102230\pi\)
−0.827474 + 0.561504i \(0.810223\pi\)
\(350\) 0 0
\(351\) 9.23559 0.492959
\(352\) 3.00110 + 0.448587i 0.159959 + 0.0239098i
\(353\) 19.1073i 1.01698i −0.861069 0.508489i \(-0.830204\pi\)
0.861069 0.508489i \(-0.169796\pi\)
\(354\) −5.37046 + 3.90187i −0.285437 + 0.207382i
\(355\) 0 0
\(356\) 0.609350 1.87539i 0.0322955 0.0993953i
\(357\) −4.55762 + 6.27303i −0.241215 + 0.332004i
\(358\) 13.4516 18.5145i 0.710938 0.978522i
\(359\) 1.36405 4.19813i 0.0719920 0.221569i −0.908586 0.417698i \(-0.862837\pi\)
0.980578 + 0.196129i \(0.0628371\pi\)
\(360\) 0 0
\(361\) 15.3640 11.1626i 0.808632 0.587505i
\(362\) 32.6546i 1.71629i
\(363\) −6.32946 + 0.110193i −0.332211 + 0.00578362i
\(364\) 1.67520 0.0878041
\(365\) 0 0
\(366\) −2.04453 6.29240i −0.106869 0.328909i
\(367\) −27.9247 9.07327i −1.45766 0.473621i −0.530302 0.847809i \(-0.677922\pi\)
−0.927353 + 0.374188i \(0.877922\pi\)
\(368\) 2.49289 3.43117i 0.129951 0.178862i
\(369\) 17.9600 + 13.0487i 0.934958 + 0.679287i
\(370\) 0 0
\(371\) −3.37634 10.3913i −0.175291 0.539490i
\(372\) 0.371787 + 0.511720i 0.0192762 + 0.0265315i
\(373\) 4.96478i 0.257067i 0.991705 + 0.128533i \(0.0410269\pi\)
−0.991705 + 0.128533i \(0.958973\pi\)
\(374\) −2.45401 + 16.4176i −0.126894 + 0.848934i
\(375\) 0 0
\(376\) −5.27606 + 3.83329i −0.272092 + 0.197687i
\(377\) −18.1842 + 5.90839i −0.936532 + 0.304298i
\(378\) −15.3503 4.98761i −0.789534 0.256535i
\(379\) 6.40996 + 4.65711i 0.329258 + 0.239220i 0.740116 0.672480i \(-0.234771\pi\)
−0.410858 + 0.911699i \(0.634771\pi\)
\(380\) 0 0
\(381\) 0.433536 1.33429i 0.0222107 0.0683576i
\(382\) −6.94016 + 2.25499i −0.355089 + 0.115375i
\(383\) −14.4099 19.8335i −0.736309 1.01344i −0.998823 0.0485140i \(-0.984551\pi\)
0.262514 0.964928i \(-0.415449\pi\)
\(384\) −5.60903 −0.286235
\(385\) 0 0
\(386\) 24.7872 1.26164
\(387\) −4.65683 6.40958i −0.236720 0.325817i
\(388\) 0.667939 0.217026i 0.0339095 0.0110179i
\(389\) −1.68752 + 5.19366i −0.0855608 + 0.263329i −0.984679 0.174377i \(-0.944209\pi\)
0.899118 + 0.437706i \(0.144209\pi\)
\(390\) 0 0
\(391\) −3.47116 2.52195i −0.175544 0.127540i
\(392\) −17.6133 5.72292i −0.889608 0.289051i
\(393\) 3.85403 1.25225i 0.194410 0.0631677i
\(394\) 2.90166 2.10818i 0.146184 0.106209i
\(395\) 0 0
\(396\) 1.41556 0.236850i 0.0711344 0.0119022i
\(397\) 6.43455i 0.322941i −0.986878 0.161470i \(-0.948376\pi\)
0.986878 0.161470i \(-0.0516236\pi\)
\(398\) 5.20180 + 7.15967i 0.260743 + 0.358882i
\(399\) −0.0617358 0.190003i −0.00309066 0.00951206i
\(400\) 0 0
\(401\) 11.8947 + 8.64197i 0.593991 + 0.431560i 0.843741 0.536751i \(-0.180348\pi\)
−0.249750 + 0.968310i \(0.580348\pi\)
\(402\) −6.15197 + 8.46746i −0.306832 + 0.422319i
\(403\) 18.2501 + 5.92981i 0.909101 + 0.295385i
\(404\) 0.496337 + 1.52757i 0.0246937 + 0.0759994i
\(405\) 0 0
\(406\) 33.4143 1.65832
\(407\) 14.5623 29.2058i 0.721826 1.44768i
\(408\) 6.22784i 0.308324i
\(409\) 3.55625 2.58376i 0.175845 0.127759i −0.496381 0.868105i \(-0.665338\pi\)
0.672226 + 0.740346i \(0.265338\pi\)
\(410\) 0 0
\(411\) −1.70241 + 5.23948i −0.0839737 + 0.258444i
\(412\) −0.387512 + 0.533365i −0.0190914 + 0.0262770i
\(413\) −18.2516 + 25.1211i −0.898101 + 1.23613i
\(414\) 1.29932 3.99890i 0.0638581 0.196535i
\(415\) 0 0
\(416\) 2.09543 1.52242i 0.102737 0.0746427i
\(417\) 0.296668i 0.0145279i
\(418\) −0.305053 0.299789i −0.0149206 0.0146631i
\(419\) −17.8526 −0.872159 −0.436079 0.899908i \(-0.643633\pi\)
−0.436079 + 0.899908i \(0.643633\pi\)
\(420\) 0 0
\(421\) −1.49210 4.59221i −0.0727205 0.223811i 0.908090 0.418776i \(-0.137541\pi\)
−0.980810 + 0.194965i \(0.937541\pi\)
\(422\) −35.3891 11.4986i −1.72271 0.559743i
\(423\) −3.49018 + 4.80382i −0.169698 + 0.233570i
\(424\) −7.09969 5.15823i −0.344792 0.250506i
\(425\) 0 0
\(426\) 2.00179 + 6.16086i 0.0969868 + 0.298495i
\(427\) −18.1910 25.0378i −0.880324 1.21166i
\(428\) 0.314335i 0.0151939i
\(429\) −3.78740 + 3.85391i −0.182857 + 0.186069i
\(430\) 0 0
\(431\) 20.1234 14.6205i 0.969312 0.704247i 0.0140175 0.999902i \(-0.495538\pi\)
0.955295 + 0.295655i \(0.0955380\pi\)
\(432\) −11.3230 + 3.67906i −0.544778 + 0.177009i
\(433\) 20.2102 + 6.56669i 0.971240 + 0.315575i 0.751316 0.659942i \(-0.229419\pi\)
0.219923 + 0.975517i \(0.429419\pi\)
\(434\) −27.1307 19.7116i −1.30232 0.946188i
\(435\) 0 0
\(436\) −0.306983 + 0.944796i −0.0147018 + 0.0452475i
\(437\) 0.105138 0.0341614i 0.00502943 0.00163416i
\(438\) −0.605339 0.833177i −0.0289242 0.0398107i
\(439\) 15.9119 0.759434 0.379717 0.925103i \(-0.376021\pi\)
0.379717 + 0.925103i \(0.376021\pi\)
\(440\) 0 0
\(441\) −16.8621 −0.802958
\(442\) 8.32843 + 11.4631i 0.396143 + 0.545244i
\(443\) 25.0010 8.12332i 1.18783 0.385951i 0.352562 0.935788i \(-0.385310\pi\)
0.835272 + 0.549838i \(0.185310\pi\)
\(444\) 0.283738 0.873257i 0.0134656 0.0414429i
\(445\) 0 0
\(446\) 5.57368 + 4.04952i 0.263922 + 0.191750i
\(447\) −4.46609 1.45112i −0.211239 0.0686356i
\(448\) −29.6377 + 9.62987i −1.40025 + 0.454969i
\(449\) −6.62554 + 4.81373i −0.312678 + 0.227174i −0.733045 0.680180i \(-0.761902\pi\)
0.420366 + 0.907354i \(0.361902\pi\)
\(450\) 0 0
\(451\) −27.2102 + 4.55278i −1.28128 + 0.214382i
\(452\) 0.938065i 0.0441229i
\(453\) 0.656313 + 0.903337i 0.0308363 + 0.0424425i
\(454\) −1.56670 4.82181i −0.0735289 0.226299i
\(455\) 0 0
\(456\) −0.129817 0.0943172i −0.00607922 0.00441681i
\(457\) 7.00428 9.64056i 0.327646 0.450966i −0.613136 0.789977i \(-0.710092\pi\)
0.940782 + 0.339011i \(0.110092\pi\)
\(458\) −34.7139 11.2792i −1.62207 0.527043i
\(459\) 3.72195 + 11.4550i 0.173726 + 0.534673i
\(460\) 0 0
\(461\) 6.96172 0.324240 0.162120 0.986771i \(-0.448167\pi\)
0.162120 + 0.986771i \(0.448167\pi\)
\(462\) 8.37624 4.36015i 0.389698 0.202853i
\(463\) 12.4762i 0.579817i −0.957054 0.289909i \(-0.906375\pi\)
0.957054 0.289909i \(-0.0936249\pi\)
\(464\) 19.9404 14.4876i 0.925712 0.672569i
\(465\) 0 0
\(466\) 7.67335 23.6161i 0.355461 1.09400i
\(467\) −3.61263 + 4.97235i −0.167172 + 0.230093i −0.884381 0.466765i \(-0.845419\pi\)
0.717209 + 0.696858i \(0.245419\pi\)
\(468\) 0.720076 0.991100i 0.0332855 0.0458136i
\(469\) −15.1288 + 46.5618i −0.698585 + 2.15002i
\(470\) 0 0
\(471\) −9.90505 + 7.19644i −0.456401 + 0.331594i
\(472\) 24.9401i 1.14796i
\(473\) 9.73762 + 1.45552i 0.447736 + 0.0669250i
\(474\) 10.8181 0.496890
\(475\) 0 0
\(476\) 0.675105 + 2.07776i 0.0309434 + 0.0952340i
\(477\) −7.59915 2.46911i −0.347941 0.113053i
\(478\) 8.73013 12.0160i 0.399307 0.549599i
\(479\) 17.9555 + 13.0454i 0.820406 + 0.596060i 0.916829 0.399281i \(-0.130740\pi\)
−0.0964228 + 0.995340i \(0.530740\pi\)
\(480\) 0 0
\(481\) −8.60798 26.4926i −0.392490 1.20796i
\(482\) 7.96402 + 10.9615i 0.362751 + 0.499284i
\(483\) 2.44076i 0.111058i
\(484\) −1.02311 + 1.46101i −0.0465049 + 0.0664095i
\(485\) 0 0
\(486\) −14.6026 + 10.6094i −0.662387 + 0.481252i
\(487\) 32.5553 10.5778i 1.47522 0.479328i 0.542539 0.840030i \(-0.317463\pi\)
0.932681 + 0.360702i \(0.117463\pi\)
\(488\) −23.6408 7.68135i −1.07017 0.347719i
\(489\) −7.44047 5.40582i −0.336470 0.244460i
\(490\) 0 0
\(491\) −5.25197 + 16.1639i −0.237018 + 0.729467i 0.759829 + 0.650123i \(0.225283\pi\)
−0.996847 + 0.0793441i \(0.974717\pi\)
\(492\) −0.738221 + 0.239863i −0.0332816 + 0.0108138i
\(493\) −14.6565 20.1729i −0.660094 0.908541i
\(494\) −0.365073 −0.0164254
\(495\) 0 0
\(496\) −24.7371 −1.11073
\(497\) 17.8107 + 24.5144i 0.798920 + 1.09962i
\(498\) −7.89815 + 2.56626i −0.353925 + 0.114997i
\(499\) −1.61599 + 4.97352i −0.0723418 + 0.222645i −0.980690 0.195570i \(-0.937344\pi\)
0.908348 + 0.418215i \(0.137344\pi\)
\(500\) 0 0
\(501\) −8.24504 5.99037i −0.368361 0.267630i
\(502\) 12.4515 + 4.04575i 0.555740 + 0.180571i
\(503\) 39.8919 12.9617i 1.77869 0.577931i 0.779845 0.625973i \(-0.215298\pi\)
0.998845 + 0.0480416i \(0.0152980\pi\)
\(504\) −23.0961 + 16.7803i −1.02878 + 0.747454i
\(505\) 0 0
\(506\) 2.41268 + 4.63497i 0.107257 + 0.206050i
\(507\) 2.86923i 0.127427i
\(508\) −0.232344 0.319794i −0.0103086 0.0141886i
\(509\) −6.29399 19.3709i −0.278976 0.858601i −0.988140 0.153557i \(-0.950927\pi\)
0.709163 0.705044i \(-0.249073\pi\)
\(510\) 0 0
\(511\) −3.89731 2.83156i −0.172407 0.125261i
\(512\) −14.5377 + 20.0094i −0.642481 + 0.884300i
\(513\) −0.295141 0.0958972i −0.0130308 0.00423396i
\(514\) −4.36838 13.4445i −0.192681 0.593012i
\(515\) 0 0
\(516\) 0.277016 0.0121949
\(517\) −1.21775 7.27801i −0.0535566 0.320086i
\(518\) 48.6816i 2.13895i
\(519\) 7.39602 5.37352i 0.324649 0.235872i
\(520\) 0 0
\(521\) 4.47391 13.7693i 0.196005 0.603243i −0.803958 0.594686i \(-0.797276\pi\)
0.999963 0.00855656i \(-0.00272367\pi\)
\(522\) 14.3630 19.7690i 0.628652 0.865265i
\(523\) −6.55975 + 9.02873i −0.286838 + 0.394799i −0.927984 0.372620i \(-0.878459\pi\)
0.641146 + 0.767419i \(0.278459\pi\)
\(524\) 0.352826 1.08589i 0.0154133 0.0474372i
\(525\) 0 0
\(526\) 12.0226 8.73490i 0.524209 0.380860i
\(527\) 25.0254i 1.09013i
\(528\) 3.10818 6.23370i 0.135266 0.271287i
\(529\) 21.6494 0.941279
\(530\) 0 0
\(531\) 7.01710 + 21.5964i 0.304516 + 0.937205i
\(532\) −0.0535341 0.0173943i −0.00232100 0.000754138i
\(533\) −13.8415 + 19.0511i −0.599540 + 0.825197i
\(534\) −7.67588 5.57685i −0.332168 0.241334i
\(535\) 0 0
\(536\) 12.1513 + 37.3979i 0.524857 + 1.61534i
\(537\) 5.71029 + 7.85954i 0.246417 + 0.339164i
\(538\) 0.121123i 0.00522197i
\(539\) 14.6880 14.9459i 0.632658 0.643768i
\(540\) 0 0
\(541\) −8.64094 + 6.27801i −0.371503 + 0.269913i −0.757834 0.652447i \(-0.773742\pi\)
0.386331 + 0.922360i \(0.373742\pi\)
\(542\) 17.2763 5.61343i 0.742083 0.241117i
\(543\) 13.1837 + 4.28363i 0.565765 + 0.183828i
\(544\) 2.73273 + 1.98544i 0.117165 + 0.0851251i
\(545\) 0 0
\(546\) 2.49077 7.66581i 0.106595 0.328066i
\(547\) −1.66207 + 0.540038i −0.0710648 + 0.0230904i −0.344334 0.938847i \(-0.611895\pi\)
0.273269 + 0.961938i \(0.411895\pi\)
\(548\) 0.912367 + 1.25577i 0.0389744 + 0.0536437i
\(549\) −22.6325 −0.965930
\(550\) 0 0
\(551\) 0.642459 0.0273697
\(552\) 1.15229 + 1.58599i 0.0490446 + 0.0675041i
\(553\) 48.1264 15.6372i 2.04654 0.664962i
\(554\) 1.63661 5.03698i 0.0695331 0.214001i
\(555\) 0 0
\(556\) 0.0676235 + 0.0491313i 0.00286787 + 0.00208363i
\(557\) −18.5307 6.02100i −0.785173 0.255118i −0.111126 0.993806i \(-0.535446\pi\)
−0.674047 + 0.738688i \(0.735446\pi\)
\(558\) −23.3241 + 7.57845i −0.987387 + 0.320821i
\(559\) 6.79900 4.93976i 0.287567 0.208930i
\(560\) 0 0
\(561\) −6.30636 3.14442i −0.266255 0.132757i
\(562\) 2.08426i 0.0879191i
\(563\) −8.63407 11.8838i −0.363883 0.500842i 0.587343 0.809338i \(-0.300174\pi\)
−0.951225 + 0.308497i \(0.900174\pi\)
\(564\) −0.0641570 0.197455i −0.00270150 0.00831435i
\(565\) 0 0
\(566\) 5.93535 + 4.31228i 0.249481 + 0.181259i
\(567\) −13.1471 + 18.0954i −0.552124 + 0.759934i
\(568\) 23.1466 + 7.52078i 0.971209 + 0.315565i
\(569\) −6.15980 18.9579i −0.258232 0.794758i −0.993176 0.116629i \(-0.962791\pi\)
0.734943 0.678129i \(-0.237209\pi\)
\(570\) 0 0
\(571\) 5.24422 0.219464 0.109732 0.993961i \(-0.465001\pi\)
0.109732 + 0.993961i \(0.465001\pi\)
\(572\) 0.251240 + 1.50156i 0.0105049 + 0.0627834i
\(573\) 3.09776i 0.129411i
\(574\) 33.2940 24.1895i 1.38967 1.00965i
\(575\) 0 0
\(576\) −7.04230 + 21.6740i −0.293429 + 0.903083i
\(577\) 22.1010 30.4194i 0.920075 1.26637i −0.0435320 0.999052i \(-0.513861\pi\)
0.963607 0.267323i \(-0.0861390\pi\)
\(578\) 2.68495 3.69551i 0.111679 0.153713i
\(579\) −3.25158 + 10.0073i −0.135131 + 0.415891i
\(580\) 0 0
\(581\) −31.4271 + 22.8331i −1.30382 + 0.947278i
\(582\) 3.37922i 0.140073i
\(583\) 8.80789 4.58484i 0.364785 0.189885i
\(584\) −3.86923 −0.160110
\(585\) 0 0
\(586\) 4.78267 + 14.7195i 0.197570 + 0.608059i
\(587\) 24.3196 + 7.90191i 1.00378 + 0.326147i 0.764373 0.644774i \(-0.223048\pi\)
0.239403 + 0.970920i \(0.423048\pi\)
\(588\) 0.346548 0.476982i 0.0142914 0.0196704i
\(589\) −0.521644 0.378997i −0.0214940 0.0156163i
\(590\) 0 0
\(591\) 0.470497 + 1.44804i 0.0193536 + 0.0595644i
\(592\) 21.1071 + 29.0514i 0.867495 + 1.19400i
\(593\) 40.2260i 1.65188i −0.563754 0.825942i \(-0.690644\pi\)
0.563754 0.825942i \(-0.309356\pi\)
\(594\) 2.16846 14.5073i 0.0889731 0.595240i
\(595\) 0 0
\(596\) −1.07040 + 0.777695i −0.0438455 + 0.0318556i
\(597\) −3.57295 + 1.16092i −0.146231 + 0.0475133i
\(598\) 4.24185 + 1.37826i 0.173462 + 0.0563613i
\(599\) 3.98843 + 2.89776i 0.162963 + 0.118399i 0.666278 0.745704i \(-0.267886\pi\)
−0.503315 + 0.864103i \(0.667886\pi\)
\(600\) 0 0
\(601\) 14.2425 43.8338i 0.580963 1.78802i −0.0339497 0.999424i \(-0.510809\pi\)
0.614912 0.788596i \(-0.289191\pi\)
\(602\) −13.9682 + 4.53853i −0.569300 + 0.184977i
\(603\) 21.0444 + 28.9651i 0.856993 + 1.17955i
\(604\) 0.314602 0.0128010
\(605\) 0 0
\(606\) 7.72824 0.313938
\(607\) 26.5306 + 36.5162i 1.07684 + 1.48215i 0.862951 + 0.505288i \(0.168614\pi\)
0.213891 + 0.976857i \(0.431386\pi\)
\(608\) −0.0827714 + 0.0268941i −0.00335682 + 0.00109070i
\(609\) −4.38328 + 13.4904i −0.177620 + 0.546657i
\(610\) 0 0
\(611\) −5.09568 3.70223i −0.206149 0.149776i
\(612\) 1.51946 + 0.493703i 0.0614206 + 0.0199567i
\(613\) 4.50247 1.46294i 0.181853 0.0590877i −0.216675 0.976244i \(-0.569521\pi\)
0.398528 + 0.917156i \(0.369521\pi\)
\(614\) −4.66133 + 3.38666i −0.188116 + 0.136674i
\(615\) 0 0
\(616\) 5.24479 35.0883i 0.211319 1.41375i
\(617\) 17.8468i 0.718486i 0.933244 + 0.359243i \(0.116965\pi\)
−0.933244 + 0.359243i \(0.883035\pi\)
\(618\) 1.86454 + 2.56632i 0.0750027 + 0.103232i
\(619\) −0.110304 0.339482i −0.00443351 0.0136449i 0.948815 0.315832i \(-0.102283\pi\)
−0.953249 + 0.302187i \(0.902283\pi\)
\(620\) 0 0
\(621\) 3.06726 + 2.22850i 0.123085 + 0.0894264i
\(622\) −13.2431 + 18.2276i −0.531002 + 0.730861i
\(623\) −42.2089 13.7145i −1.69107 0.549461i
\(624\) −1.83729 5.65461i −0.0735506 0.226365i
\(625\) 0 0
\(626\) −36.0297 −1.44004
\(627\) 0.161051 0.0838329i 0.00643174 0.00334796i
\(628\) 3.44960i 0.137654i
\(629\) 29.3900 21.3531i 1.17186 0.851404i
\(630\) 0 0
\(631\) −9.88614 + 30.4264i −0.393561 + 1.21126i 0.536516 + 0.843890i \(0.319740\pi\)
−0.930077 + 0.367366i \(0.880260\pi\)
\(632\) 23.8898 32.8815i 0.950287 1.30796i
\(633\) 9.28466 12.7792i 0.369032 0.507929i
\(634\) −2.42849 + 7.47413i −0.0964477 + 0.296836i
\(635\) 0 0
\(636\) 0.226021 0.164214i 0.00896231 0.00651150i
\(637\) 17.8866i 0.708693i
\(638\) 5.01136 + 29.9509i 0.198402 + 1.18577i
\(639\) 22.1594 0.876610
\(640\) 0 0
\(641\) 0.312987 + 0.963274i 0.0123622 + 0.0380470i 0.957047 0.289932i \(-0.0936326\pi\)
−0.944685 + 0.327979i \(0.893633\pi\)
\(642\) 1.43842 + 0.467370i 0.0567697 + 0.0184456i
\(643\) 8.80057 12.1130i 0.347061 0.477688i −0.599426 0.800430i \(-0.704605\pi\)
0.946487 + 0.322742i \(0.104605\pi\)
\(644\) 0.556354 + 0.404215i 0.0219234 + 0.0159283i
\(645\) 0 0
\(646\) −0.147125 0.452803i −0.00578855 0.0178153i
\(647\) −10.5139 14.4712i −0.413345 0.568920i 0.550686 0.834713i \(-0.314366\pi\)
−0.964030 + 0.265793i \(0.914366\pi\)
\(648\) 17.9650i 0.705732i
\(649\) −25.2546 12.5922i −0.991331 0.494287i
\(650\) 0 0
\(651\) 11.5172 8.36772i 0.451394 0.327957i
\(652\) −2.46444 + 0.800746i −0.0965150 + 0.0313596i
\(653\) −43.5244 14.1419i −1.70324 0.553416i −0.714055 0.700089i \(-0.753144\pi\)
−0.989185 + 0.146673i \(0.953144\pi\)
\(654\) 3.86701 + 2.80955i 0.151212 + 0.109862i
\(655\) 0 0
\(656\) 9.38072 28.8709i 0.366255 1.12722i
\(657\) −3.35049 + 1.08864i −0.130715 + 0.0424719i
\(658\) 6.47007 + 8.90529i 0.252230 + 0.347164i
\(659\) 9.54036 0.371640 0.185820 0.982584i \(-0.440506\pi\)
0.185820 + 0.982584i \(0.440506\pi\)
\(660\) 0 0
\(661\) 15.7769 0.613651 0.306825 0.951766i \(-0.400733\pi\)
0.306825 + 0.951766i \(0.400733\pi\)
\(662\) 10.2976 + 14.1734i 0.400228 + 0.550866i
\(663\) −5.72052 + 1.85871i −0.222167 + 0.0721863i
\(664\) −9.64154 + 29.6736i −0.374164 + 1.15156i
\(665\) 0 0
\(666\) 28.8016 + 20.9256i 1.11604 + 0.810850i
\(667\) −7.46486 2.42548i −0.289040 0.0939149i
\(668\) −2.73093 + 0.887333i −0.105663 + 0.0343319i
\(669\) −2.36607 + 1.71905i −0.0914774 + 0.0664622i
\(670\) 0 0
\(671\) 19.7144 20.0606i 0.761065 0.774430i
\(672\) 1.92152i 0.0741243i
\(673\) 27.8041 + 38.2690i 1.07177 + 1.47516i 0.868273 + 0.496086i \(0.165230\pi\)
0.203494 + 0.979076i \(0.434770\pi\)
\(674\) −5.60749 17.2581i −0.215992 0.664756i
\(675\) 0 0
\(676\) −0.654023 0.475175i −0.0251547 0.0182760i
\(677\) 16.1894 22.2828i 0.622210 0.856399i −0.375301 0.926903i \(-0.622461\pi\)
0.997512 + 0.0705039i \(0.0224607\pi\)
\(678\) −4.29265 1.39477i −0.164858 0.0535657i
\(679\) −4.88457 15.0332i −0.187453 0.576920i
\(680\) 0 0
\(681\) 2.15223 0.0824736
\(682\) 13.5995 27.2749i 0.520753 1.04441i
\(683\) 27.1617i 1.03931i 0.854375 + 0.519656i \(0.173940\pi\)
−0.854375 + 0.519656i \(0.826060\pi\)
\(684\) −0.0333024 + 0.0241956i −0.00127335 + 0.000925143i
\(685\) 0 0
\(686\) 1.04233 3.20795i 0.0397962 0.122480i
\(687\) 9.10752 12.5354i 0.347474 0.478256i
\(688\) −6.36790 + 8.76467i −0.242774 + 0.334150i
\(689\) 2.61913 8.06084i 0.0997808 0.307094i
\(690\) 0 0
\(691\) 6.08931 4.42414i 0.231648 0.168302i −0.465906 0.884834i \(-0.654272\pi\)
0.697554 + 0.716532i \(0.254272\pi\)
\(692\) 2.57579i 0.0979167i
\(693\) −5.33073 31.8597i −0.202498 1.21025i
\(694\) 11.4541 0.434791
\(695\) 0 0
\(696\) 3.52060 + 10.8353i 0.133448 + 0.410711i
\(697\) −29.2074 9.49007i −1.10631 0.359462i
\(698\) 8.28625 11.4051i 0.313639 0.431688i
\(699\) 8.52796 + 6.19593i 0.322557 + 0.234351i
\(700\) 0 0
\(701\) −9.83315 30.2633i −0.371393 1.14303i −0.945880 0.324516i \(-0.894799\pi\)
0.574487 0.818513i \(-0.305201\pi\)
\(702\) −7.35934 10.1293i −0.277760 0.382304i
\(703\) 0.936004i 0.0353021i
\(704\) −13.0767 25.1215i −0.492847 0.946802i
\(705\) 0 0
\(706\) −20.9562 + 15.2255i −0.788696 + 0.573021i
\(707\) 34.3807 11.1710i 1.29302 0.420127i
\(708\) −0.755117 0.245352i −0.0283790 0.00922091i
\(709\) −11.6807 8.48651i −0.438677 0.318718i 0.346432 0.938075i \(-0.387393\pi\)
−0.785109 + 0.619357i \(0.787393\pi\)
\(710\) 0 0
\(711\) 11.4355 35.1947i 0.428863 1.31991i
\(712\) −33.9017 + 11.0153i −1.27052 + 0.412817i
\(713\) 4.63026 + 6.37300i 0.173405 + 0.238671i
\(714\) 10.5117 0.393392
\(715\) 0 0
\(716\) 2.73721 0.102294
\(717\) 3.70600 + 5.10087i 0.138403 + 0.190496i
\(718\) −5.69129 + 1.84921i −0.212397 + 0.0690120i
\(719\) −1.67179 + 5.14526i −0.0623474 + 0.191886i −0.977378 0.211498i \(-0.932166\pi\)
0.915031 + 0.403383i \(0.132166\pi\)
\(720\) 0 0
\(721\) 12.0043 + 8.72166i 0.447065 + 0.324811i
\(722\) −24.4855 7.95581i −0.911255 0.296085i
\(723\) −5.47022 + 1.77738i −0.203440 + 0.0661016i
\(724\) 3.15978 2.29571i 0.117432 0.0853195i
\(725\) 0 0
\(726\) 5.16446 + 6.85412i 0.191671 + 0.254380i
\(727\) 16.7753i 0.622161i −0.950384 0.311080i \(-0.899309\pi\)
0.950384 0.311080i \(-0.100691\pi\)
\(728\) −17.7998 24.4993i −0.659705 0.908006i
\(729\) 3.31409 + 10.1997i 0.122744 + 0.377767i
\(730\) 0 0
\(731\) 8.86684 + 6.44213i 0.327952 + 0.238271i
\(732\) 0.465139 0.640209i 0.0171920 0.0236628i
\(733\) 13.3957 + 4.35252i 0.494781 + 0.160764i 0.545770 0.837935i \(-0.316237\pi\)
−0.0509889 + 0.998699i \(0.516237\pi\)
\(734\) 12.3004 + 37.8567i 0.454016 + 1.39732i
\(735\) 0 0
\(736\) 1.06327 0.0391926
\(737\) −44.0046 6.57756i −1.62093 0.242287i
\(738\) 30.0956i 1.10783i
\(739\) −29.4043 + 21.3635i −1.08165 + 0.785868i −0.977971 0.208743i \(-0.933063\pi\)
−0.103683 + 0.994610i \(0.533063\pi\)
\(740\) 0 0
\(741\) 0.0478902 0.147391i 0.00175929 0.00541454i
\(742\) −8.70640 + 11.9833i −0.319622 + 0.439922i
\(743\) 1.15039 1.58338i 0.0422037 0.0580884i −0.787394 0.616451i \(-0.788570\pi\)
0.829597 + 0.558362i \(0.188570\pi\)
\(744\) 3.53336 10.8746i 0.129539 0.398681i
\(745\) 0 0
\(746\) 5.44519 3.95617i 0.199363 0.144846i
\(747\) 28.4080i 1.03939i
\(748\) −1.76115 + 0.916745i −0.0643940 + 0.0335195i
\(749\) 7.07466 0.258503
\(750\) 0 0
\(751\) 5.78189 + 17.7948i 0.210984 + 0.649342i 0.999414 + 0.0342181i \(0.0108941\pi\)
−0.788430 + 0.615124i \(0.789106\pi\)
\(752\) 7.72220 + 2.50910i 0.281600 + 0.0914973i
\(753\) −3.26678 + 4.49634i −0.119048 + 0.163856i
\(754\) 20.9701 + 15.2356i 0.763685 + 0.554850i
\(755\) 0 0
\(756\) −0.596550 1.83599i −0.0216963 0.0667744i
\(757\) 8.55054 + 11.7688i 0.310775 + 0.427744i 0.935623 0.353002i \(-0.114839\pi\)
−0.624848 + 0.780746i \(0.714839\pi\)
\(758\) 10.7412i 0.390138i
\(759\) −2.18777 + 0.366056i −0.0794111 + 0.0132870i
\(760\) 0 0
\(761\) −10.6309 + 7.72383i −0.385371 + 0.279989i −0.763556 0.645741i \(-0.776548\pi\)
0.378185 + 0.925730i \(0.376548\pi\)
\(762\) −1.80886 + 0.587734i −0.0655281 + 0.0212914i
\(763\) 21.2643 + 6.90920i 0.769820 + 0.250130i
\(764\) −0.706114 0.513022i −0.0255463 0.0185605i
\(765\) 0 0
\(766\) −10.2702 + 31.6084i −0.371077 + 1.14206i
\(767\) −22.9085 + 7.44344i −0.827180 + 0.268767i
\(768\) −1.30749 1.79960i −0.0471799 0.0649376i
\(769\) −38.9767 −1.40554 −0.702768 0.711419i \(-0.748053\pi\)
−0.702768 + 0.711419i \(0.748053\pi\)
\(770\) 0 0
\(771\) 6.00099 0.216121
\(772\) 1.74261 + 2.39850i 0.0627179 + 0.0863239i
\(773\) −36.8571 + 11.9756i −1.32566 + 0.430733i −0.884435 0.466664i \(-0.845456\pi\)
−0.441225 + 0.897397i \(0.645456\pi\)
\(774\) −3.31902 + 10.2149i −0.119300 + 0.367167i
\(775\) 0 0
\(776\) −10.2712 7.46243i −0.368713 0.267886i
\(777\) −19.6542 6.38604i −0.705091 0.229098i
\(778\) 7.04091 2.28773i 0.252429 0.0820192i
\(779\) 0.640147 0.465094i 0.0229356 0.0166637i
\(780\) 0 0
\(781\) −19.3023 + 19.6412i −0.690689 + 0.702818i
\(782\) 5.81665i 0.208003i
\(783\) 12.9510 + 17.8256i 0.462832 + 0.637034i
\(784\) 7.12525 + 21.9293i 0.254473 + 0.783188i
\(785\) 0 0
\(786\) −4.44449 3.22911i −0.158530 0.115179i
\(787\) −12.5693 + 17.3002i −0.448048 + 0.616685i −0.971977 0.235077i \(-0.924466\pi\)
0.523929 + 0.851762i \(0.324466\pi\)
\(788\) 0.407990 + 0.132564i 0.0145341 + 0.00472240i
\(789\) 1.94943 + 5.99971i 0.0694014 + 0.213595i
\(790\) 0 0
\(791\) −21.1128 −0.750686
\(792\) −18.5049 18.1855i −0.657543 0.646195i
\(793\) 24.0075i 0.852533i
\(794\) −7.05718 + 5.12734i −0.250450 + 0.181963i
\(795\) 0 0
\(796\) −0.327093 + 1.00669i −0.0115935 + 0.0356812i
\(797\) −1.30756 + 1.79970i −0.0463162 + 0.0637488i −0.831547 0.555454i \(-0.812544\pi\)
0.785231 + 0.619203i \(0.212544\pi\)
\(798\) −0.159195 + 0.219113i −0.00563543 + 0.00775651i
\(799\) 2.53834 7.81222i 0.0898002 0.276377i
\(800\) 0 0
\(801\) −26.2573 + 19.0770i −0.927756 + 0.674054i
\(802\) 19.9319i 0.703821i
\(803\) 1.95356 3.91802i 0.0689398 0.138264i
\(804\) −1.25184 −0.0441491
\(805\) 0 0
\(806\) −8.03889 24.7412i −0.283158 0.871470i
\(807\) −0.0489008 0.0158888i −0.00172139 0.000559314i
\(808\) 17.0665 23.4900i 0.600397 0.826376i
\(809\) 17.1254 + 12.4424i 0.602098 + 0.437450i 0.846623 0.532193i \(-0.178632\pi\)
−0.244525 + 0.969643i \(0.578632\pi\)
\(810\) 0 0
\(811\) −11.3462 34.9201i −0.398420 1.22621i −0.926266 0.376871i \(-0.877000\pi\)
0.527845 0.849341i \(-0.323000\pi\)
\(812\) 2.34912 + 3.23329i 0.0824380 + 0.113466i
\(813\) 7.71135i 0.270449i
\(814\) −43.6357 + 7.30109i −1.52943 + 0.255903i
\(815\) 0 0
\(816\) 6.27303 4.55762i 0.219600 0.159549i
\(817\) −0.268567 + 0.0872627i −0.00939597 + 0.00305294i
\(818\) −5.66756 1.84150i −0.198161 0.0643866i
\(819\) −22.3065 16.2066i −0.779451 0.566305i
\(820\) 0 0
\(821\) −12.2585 + 37.7278i −0.427825 + 1.31671i 0.472439 + 0.881363i \(0.343374\pi\)
−0.900264 + 0.435345i \(0.856626\pi\)
\(822\) 7.10303 2.30791i 0.247747 0.0804977i
\(823\) −26.9960 37.1568i −0.941021 1.29520i −0.955402 0.295308i \(-0.904578\pi\)
0.0143810 0.999897i \(-0.495422\pi\)
\(824\) 11.9178 0.415178
\(825\) 0 0
\(826\) 42.0956 1.46469
\(827\) 23.3321 + 32.1139i 0.811337 + 1.11671i 0.991116 + 0.133002i \(0.0424616\pi\)
−0.179779 + 0.983707i \(0.557538\pi\)
\(828\) 0.478293 0.155407i 0.0166218 0.00540076i
\(829\) −2.36578 + 7.28113i −0.0821671 + 0.252884i −0.983697 0.179832i \(-0.942445\pi\)
0.901530 + 0.432716i \(0.142445\pi\)
\(830\) 0 0
\(831\) 1.81889 + 1.32150i 0.0630966 + 0.0458423i
\(832\) −22.9908 7.47017i −0.797063 0.258982i
\(833\) 22.1849 7.20831i 0.768661 0.249753i
\(834\) 0.325374 0.236398i 0.0112668 0.00818580i
\(835\) 0 0
\(836\) 0.00756251 0.0505940i 0.000261555 0.00174983i
\(837\) 22.1135i 0.764354i
\(838\) 14.2258 + 19.5801i 0.491422 + 0.676384i
\(839\) −8.52536 26.2383i −0.294328 0.905848i −0.983446 0.181200i \(-0.942002\pi\)
0.689118 0.724649i \(-0.257998\pi\)
\(840\) 0 0
\(841\) −13.4418 9.76607i −0.463512 0.336761i
\(842\) −3.84760 + 5.29576i −0.132597 + 0.182504i
\(843\) 0.841477 + 0.273412i 0.0289820 + 0.00941683i
\(844\) −1.37531 4.23276i −0.0473400 0.145697i
\(845\) 0 0
\(846\) 8.04979 0.276757
\(847\) 32.8826 + 23.0269i 1.12986 + 0.791213i
\(848\) 10.9261i 0.375203i
\(849\) −2.51960 + 1.83059i −0.0864724 + 0.0628258i
\(850\) 0 0
\(851\) 3.53370 10.8756i 0.121134 0.372811i
\(852\) −0.455416 + 0.626826i −0.0156023 + 0.0214747i
\(853\) −24.7749 + 34.0998i −0.848277 + 1.16755i 0.135962 + 0.990714i \(0.456587\pi\)
−0.984240 + 0.176840i \(0.943413\pi\)
\(854\) −12.9651 + 39.9024i −0.443656 + 1.36543i
\(855\) 0 0
\(856\) 4.59707 3.33997i 0.157125 0.114158i
\(857\) 45.0850i 1.54008i −0.637998 0.770038i \(-0.720237\pi\)
0.637998 0.770038i \(-0.279763\pi\)
\(858\) 7.24480 + 1.08291i 0.247333 + 0.0369700i
\(859\) 11.8257 0.403488 0.201744 0.979438i \(-0.435339\pi\)
0.201744 + 0.979438i \(0.435339\pi\)
\(860\) 0 0
\(861\) 5.39854 + 16.6150i 0.183982 + 0.566237i
\(862\) −32.0705 10.4204i −1.09233 0.354919i
\(863\) −16.3823 + 22.5484i −0.557662 + 0.767555i −0.991027 0.133663i \(-0.957326\pi\)
0.433365 + 0.901218i \(0.357326\pi\)
\(864\) −2.41475 1.75442i −0.0821514 0.0596865i
\(865\) 0 0
\(866\) −8.90229 27.3984i −0.302512 0.931037i
\(867\) 1.13978 + 1.56877i 0.0387089 + 0.0532782i
\(868\) 4.01105i 0.136144i
\(869\) 21.2342 + 40.7929i 0.720323 + 1.38380i
\(870\) 0 0
\(871\) −30.7249 + 22.3230i −1.04107 + 0.756384i
\(872\) 17.0793 5.54939i 0.578377 0.187926i
\(873\) −10.9937 3.57207i −0.372081 0.120896i
\(874\) −0.121246 0.0880900i −0.00410119 0.00297969i
\(875\) 0 0
\(876\) 0.0380642 0.117149i 0.00128607 0.00395811i
\(877\) 10.8869 3.53736i 0.367624 0.119448i −0.119379 0.992849i \(-0.538090\pi\)
0.487003 + 0.873401i \(0.338090\pi\)
\(878\) −12.6793 17.4516i −0.427907 0.588963i
\(879\) −6.57011 −0.221604
\(880\) 0 0
\(881\) 47.0037 1.58360 0.791798 0.610783i \(-0.209145\pi\)
0.791798 + 0.610783i \(0.209145\pi\)
\(882\) 13.4365 + 18.4938i 0.452431 + 0.622717i
\(883\) −44.6185 + 14.4974i −1.50153 + 0.487877i −0.940464 0.339894i \(-0.889609\pi\)
−0.561067 + 0.827770i \(0.689609\pi\)
\(884\) −0.523698 + 1.61178i −0.0176139 + 0.0542099i
\(885\) 0 0
\(886\) −28.8313 20.9472i −0.968607 0.703734i
\(887\) −26.4800 8.60386i −0.889110 0.288889i −0.171375 0.985206i \(-0.554821\pi\)
−0.717735 + 0.696316i \(0.754821\pi\)
\(888\) −15.7860 + 5.12920i −0.529745 + 0.172125i
\(889\) −7.19754 + 5.22932i −0.241398 + 0.175386i
\(890\) 0 0
\(891\) −18.1915 9.07048i −0.609439 0.303872i
\(892\) 0.824022i 0.0275903i
\(893\) 0.124401 + 0.171223i 0.00416290 + 0.00572975i
\(894\) 1.96725 + 6.05456i 0.0657946 + 0.202495i
\(895\) 0 0
\(896\) 28.7759 + 20.9069i 0.961335 + 0.698451i
\(897\) −1.11289 + 1.53176i −0.0371584 + 0.0511441i
\(898\) 10.5591 + 3.43085i 0.352360 + 0.114489i
\(899\) 14.1469 + 43.5397i 0.471826 + 1.45213i
\(900\) 0 0
\(901\) 11.0534 0.368244
\(902\) 26.6756 + 26.2153i 0.888201 + 0.872872i
\(903\) 6.23473i 0.207479i
\(904\) −13.7190 + 9.96742i −0.456287 + 0.331512i
\(905\) 0 0
\(906\) 0.467767 1.43964i 0.0155405 0.0478288i
\(907\) −16.8243 + 23.1567i −0.558643 + 0.768907i −0.991153 0.132723i \(-0.957628\pi\)
0.432510 + 0.901629i \(0.357628\pi\)
\(908\) 0.356432 0.490586i 0.0118286 0.0162807i
\(909\) 8.16930 25.1425i 0.270959 0.833925i
\(910\) 0 0
\(911\) −4.14883 + 3.01430i −0.137457 + 0.0998682i −0.654389 0.756158i \(-0.727074\pi\)
0.516932 + 0.856026i \(0.327074\pi\)
\(912\) 0.199781i 0.00661542i
\(913\) −25.1798 24.7452i −0.833330 0.818948i
\(914\) −16.1547 −0.534351
\(915\) 0 0
\(916\) −1.34907 4.15200i −0.0445744 0.137186i
\(917\) −24.4398 7.94098i −0.807074 0.262234i
\(918\) 9.59759 13.2100i 0.316768 0.435993i
\(919\) 28.5429 + 20.7376i 0.941544 + 0.684072i 0.948792 0.315902i \(-0.102307\pi\)
−0.00724799 + 0.999974i \(0.502307\pi\)
\(920\) 0 0
\(921\) −0.755822 2.32618i −0.0249052 0.0766503i
\(922\) −5.54742 7.63536i −0.182694 0.251457i
\(923\) 23.5057i 0.773699i
\(924\) 1.01078 + 0.503984i 0.0332521 + 0.0165798i
\(925\) 0 0
\(926\) −13.6834 + 9.94159i −0.449665 + 0.326701i
\(927\) 10.3200 3.35318i 0.338954 0.110133i
\(928\) 5.87682 + 1.90950i 0.192916 + 0.0626823i
\(929\) −47.8474 34.7632i −1.56982 1.14054i −0.927325 0.374256i \(-0.877898\pi\)
−0.642498 0.766287i \(-0.722102\pi\)
\(930\) 0 0
\(931\) −0.185724 + 0.571601i −0.00608687 + 0.0187335i
\(932\) 2.82464 0.917781i 0.0925242 0.0300629i
\(933\) −5.62181 7.73775i −0.184050 0.253323i
\(934\) 8.33220 0.272638
\(935\) 0 0
\(936\) −22.1458 −0.723857
\(937\) −8.48911 11.6843i −0.277327 0.381708i 0.647519 0.762049i \(-0.275807\pi\)
−0.924846 + 0.380341i \(0.875807\pi\)
\(938\) 63.1226 20.5098i 2.06103 0.669668i
\(939\) 4.72637 14.5463i 0.154239 0.474700i
\(940\) 0 0
\(941\) 15.0955 + 10.9675i 0.492100 + 0.357532i 0.805991 0.591927i \(-0.201633\pi\)
−0.313891 + 0.949459i \(0.601633\pi\)
\(942\) 15.7856 + 5.12905i 0.514322 + 0.167113i
\(943\) −9.19386 + 2.98727i −0.299393 + 0.0972788i
\(944\) 25.1211 18.2516i 0.817623 0.594038i
\(945\) 0 0
\(946\) −6.16301 11.8397i −0.200377 0.384942i
\(947\) 0.991391i 0.0322159i −0.999870 0.0161079i \(-0.994872\pi\)
0.999870 0.0161079i \(-0.00512754\pi\)
\(948\) 0.760540 + 1.04679i 0.0247012 + 0.0339983i
\(949\) −1.15478 3.55405i −0.0374858 0.115369i
\(950\) 0 0
\(951\) −2.69896 1.96091i −0.0875198 0.0635869i
\(952\) 23.2134 31.9505i 0.752351 1.03552i
\(953\) 7.85957 + 2.55373i 0.254597 + 0.0827234i 0.433535 0.901137i \(-0.357266\pi\)
−0.178938 + 0.983860i \(0.557266\pi\)
\(954\) 3.34731 + 10.3020i 0.108373 + 0.333539i
\(955\) 0 0
\(956\) 1.77646 0.0574549
\(957\) −12.7495 1.90572i −0.412132 0.0616031i
\(958\) 30.0881i 0.972101i
\(959\) 28.2633 20.5345i 0.912669 0.663093i
\(960\) 0 0
\(961\) 4.61867 14.2148i 0.148989 0.458542i
\(962\) −22.1969 + 30.5515i −0.715658 + 0.985019i
\(963\) 3.04102 4.18560i 0.0979954 0.134879i
\(964\) −0.500784 + 1.54125i −0.0161292 + 0.0496404i
\(965\) 0 0
\(966\) 2.67693 1.94491i 0.0861289 0.0625763i
\(967\) 7.36029i 0.236691i 0.992972 + 0.118345i \(0.0377590\pi\)
−0.992972 + 0.118345i \(0.962241\pi\)
\(968\) 32.2380 0.561246i 1.03617 0.0180391i
\(969\) 0.202110 0.00649271
\(970\) 0 0
\(971\) −1.53808 4.73372i −0.0493593 0.151912i 0.923339 0.383986i \(-0.125449\pi\)
−0.972698 + 0.232074i \(0.925449\pi\)
\(972\) −2.05321 0.667127i −0.0658566 0.0213981i
\(973\) 1.10579 1.52199i 0.0354500 0.0487927i
\(974\) −37.5429 27.2765i −1.20295 0.873996i
\(975\) 0 0
\(976\) 9.56357 + 29.4337i 0.306123 + 0.942148i
\(977\) −6.07583 8.36266i −0.194383 0.267545i 0.700689 0.713467i \(-0.252876\pi\)
−0.895072 + 0.445922i \(0.852876\pi\)
\(978\) 12.4680i 0.398684i
\(979\) 5.96266 39.8908i 0.190567 1.27492i
\(980\) 0 0
\(981\) 13.2281 9.61077i 0.422340 0.306848i
\(982\) 21.9130 7.11996i 0.699272 0.227207i
\(983\) 27.6390 + 8.98045i 0.881547 + 0.286432i 0.714599 0.699534i \(-0.246609\pi\)
0.166947 + 0.985966i \(0.446609\pi\)
\(984\) 11.3519 + 8.24764i 0.361886 + 0.262925i
\(985\) 0 0
\(986\) −10.4460 + 32.1493i −0.332667 + 1.02384i
\(987\) −4.44408 + 1.44397i −0.141456 + 0.0459620i
\(988\) −0.0256657 0.0353258i −0.000816534 0.00112386i
\(989\) 3.44997 0.109703
\(990\) 0 0
\(991\) 7.70381 0.244719 0.122360 0.992486i \(-0.460954\pi\)
0.122360 + 0.992486i \(0.460954\pi\)
\(992\) −3.64524 5.01724i −0.115737 0.159298i
\(993\) −7.07308 + 2.29818i −0.224458 + 0.0729307i
\(994\) 12.6941 39.0683i 0.402631 1.23917i
\(995\) 0 0
\(996\) −0.803583 0.583837i −0.0254625 0.0184996i
\(997\) −2.72400 0.885080i −0.0862698 0.0280308i 0.265564 0.964093i \(-0.414442\pi\)
−0.351834 + 0.936062i \(0.614442\pi\)
\(998\) 6.74247 2.19076i 0.213429 0.0693473i
\(999\) −25.9702 + 18.8685i −0.821661 + 0.596972i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.a.124.1 16
5.2 odd 4 275.2.h.a.201.2 8
5.3 odd 4 55.2.g.b.36.1 yes 8
5.4 even 2 inner 275.2.z.a.124.4 16
11.4 even 5 inner 275.2.z.a.224.4 16
15.8 even 4 495.2.n.e.91.2 8
20.3 even 4 880.2.bo.h.641.1 8
55.2 even 20 3025.2.a.w.1.4 4
55.3 odd 20 605.2.g.m.511.2 8
55.4 even 10 inner 275.2.z.a.224.1 16
55.8 even 20 605.2.g.e.511.1 8
55.13 even 20 605.2.a.k.1.1 4
55.18 even 20 605.2.g.k.81.2 8
55.28 even 20 605.2.g.e.251.1 8
55.37 odd 20 275.2.h.a.26.2 8
55.38 odd 20 605.2.g.m.251.2 8
55.42 odd 20 3025.2.a.bd.1.1 4
55.43 even 4 605.2.g.k.366.2 8
55.48 odd 20 55.2.g.b.26.1 8
55.53 odd 20 605.2.a.j.1.4 4
165.53 even 20 5445.2.a.bp.1.1 4
165.68 odd 20 5445.2.a.bi.1.4 4
165.158 even 20 495.2.n.e.136.2 8
220.103 even 20 880.2.bo.h.81.1 8
220.123 odd 20 9680.2.a.cm.1.2 4
220.163 even 20 9680.2.a.cn.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.26.1 8 55.48 odd 20
55.2.g.b.36.1 yes 8 5.3 odd 4
275.2.h.a.26.2 8 55.37 odd 20
275.2.h.a.201.2 8 5.2 odd 4
275.2.z.a.124.1 16 1.1 even 1 trivial
275.2.z.a.124.4 16 5.4 even 2 inner
275.2.z.a.224.1 16 55.4 even 10 inner
275.2.z.a.224.4 16 11.4 even 5 inner
495.2.n.e.91.2 8 15.8 even 4
495.2.n.e.136.2 8 165.158 even 20
605.2.a.j.1.4 4 55.53 odd 20
605.2.a.k.1.1 4 55.13 even 20
605.2.g.e.251.1 8 55.28 even 20
605.2.g.e.511.1 8 55.8 even 20
605.2.g.k.81.2 8 55.18 even 20
605.2.g.k.366.2 8 55.43 even 4
605.2.g.m.251.2 8 55.38 odd 20
605.2.g.m.511.2 8 55.3 odd 20
880.2.bo.h.81.1 8 220.103 even 20
880.2.bo.h.641.1 8 20.3 even 4
3025.2.a.w.1.4 4 55.2 even 20
3025.2.a.bd.1.1 4 55.42 odd 20
5445.2.a.bi.1.4 4 165.68 odd 20
5445.2.a.bp.1.1 4 165.53 even 20
9680.2.a.cm.1.2 4 220.123 odd 20
9680.2.a.cn.1.2 4 220.163 even 20