Properties

Label 3025.2.a.w.1.4
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.35567\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35567 q^{2} -0.575493 q^{3} -0.162147 q^{4} -0.780181 q^{6} -3.64941 q^{7} -2.93117 q^{8} -2.66881 q^{9} +0.0933146 q^{12} -2.83095 q^{13} -4.94742 q^{14} -3.64941 q^{16} +3.69195 q^{17} -3.61803 q^{18} +0.0951243 q^{19} +2.10021 q^{21} -1.16215 q^{23} +1.68687 q^{24} -3.83785 q^{26} +3.26236 q^{27} +0.591742 q^{28} +6.75389 q^{29} +6.77837 q^{31} +0.914918 q^{32} +5.00509 q^{34} +0.432740 q^{36} -9.83980 q^{37} +0.128958 q^{38} +1.62920 q^{39} +8.31822 q^{41} +2.84720 q^{42} -2.96862 q^{43} -1.57549 q^{46} +2.22491 q^{47} +2.10021 q^{48} +6.31822 q^{49} -2.12469 q^{51} +0.459031 q^{52} -2.99393 q^{53} +4.42270 q^{54} +10.6970 q^{56} -0.0547434 q^{57} +9.15607 q^{58} -8.50860 q^{59} +8.48037 q^{61} +9.18926 q^{62} +9.73958 q^{63} +8.53916 q^{64} +13.4153 q^{67} -0.598640 q^{68} +0.668808 q^{69} +8.30309 q^{71} +7.82272 q^{72} -1.32003 q^{73} -13.3396 q^{74} -0.0154241 q^{76} +2.20866 q^{78} +13.8661 q^{79} +6.12896 q^{81} +11.2768 q^{82} -10.6445 q^{83} -0.340544 q^{84} -4.02448 q^{86} -3.88682 q^{87} -12.1612 q^{89} +10.3313 q^{91} +0.188439 q^{92} -3.90091 q^{93} +3.01625 q^{94} -0.526529 q^{96} +4.33133 q^{97} +8.56545 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} + q^{6} - 3 q^{7} - 3 q^{8} - 8 q^{12} - q^{13} + 2 q^{14} - 3 q^{16} + q^{17} - 10 q^{18} + 20 q^{19} + 10 q^{21} - 5 q^{23} + 11 q^{24} - 15 q^{26} + 15 q^{27} - 13 q^{28} + 12 q^{29}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35567 0.958606 0.479303 0.877649i \(-0.340889\pi\)
0.479303 + 0.877649i \(0.340889\pi\)
\(3\) −0.575493 −0.332261 −0.166131 0.986104i \(-0.553127\pi\)
−0.166131 + 0.986104i \(0.553127\pi\)
\(4\) −0.162147 −0.0810736
\(5\) 0 0
\(6\) −0.780181 −0.318508
\(7\) −3.64941 −1.37935 −0.689674 0.724120i \(-0.742246\pi\)
−0.689674 + 0.724120i \(0.742246\pi\)
\(8\) −2.93117 −1.03632
\(9\) −2.66881 −0.889603
\(10\) 0 0
\(11\) 0 0
\(12\) 0.0933146 0.0269376
\(13\) −2.83095 −0.785166 −0.392583 0.919717i \(-0.628418\pi\)
−0.392583 + 0.919717i \(0.628418\pi\)
\(14\) −4.94742 −1.32225
\(15\) 0 0
\(16\) −3.64941 −0.912353
\(17\) 3.69195 0.895431 0.447715 0.894176i \(-0.352238\pi\)
0.447715 + 0.894176i \(0.352238\pi\)
\(18\) −3.61803 −0.852779
\(19\) 0.0951243 0.0218230 0.0109115 0.999940i \(-0.496527\pi\)
0.0109115 + 0.999940i \(0.496527\pi\)
\(20\) 0 0
\(21\) 2.10021 0.458304
\(22\) 0 0
\(23\) −1.16215 −0.242324 −0.121162 0.992633i \(-0.538662\pi\)
−0.121162 + 0.992633i \(0.538662\pi\)
\(24\) 1.68687 0.344330
\(25\) 0 0
\(26\) −3.83785 −0.752665
\(27\) 3.26236 0.627841
\(28\) 0.591742 0.111829
\(29\) 6.75389 1.25417 0.627083 0.778953i \(-0.284249\pi\)
0.627083 + 0.778953i \(0.284249\pi\)
\(30\) 0 0
\(31\) 6.77837 1.21743 0.608716 0.793388i \(-0.291685\pi\)
0.608716 + 0.793388i \(0.291685\pi\)
\(32\) 0.914918 0.161736
\(33\) 0 0
\(34\) 5.00509 0.858366
\(35\) 0 0
\(36\) 0.432740 0.0721233
\(37\) −9.83980 −1.61765 −0.808826 0.588048i \(-0.799897\pi\)
−0.808826 + 0.588048i \(0.799897\pi\)
\(38\) 0.128958 0.0209197
\(39\) 1.62920 0.260880
\(40\) 0 0
\(41\) 8.31822 1.29909 0.649544 0.760324i \(-0.274960\pi\)
0.649544 + 0.760324i \(0.274960\pi\)
\(42\) 2.84720 0.439333
\(43\) −2.96862 −0.452710 −0.226355 0.974045i \(-0.572681\pi\)
−0.226355 + 0.974045i \(0.572681\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.57549 −0.232294
\(47\) 2.22491 0.324536 0.162268 0.986747i \(-0.448119\pi\)
0.162268 + 0.986747i \(0.448119\pi\)
\(48\) 2.10021 0.303140
\(49\) 6.31822 0.902603
\(50\) 0 0
\(51\) −2.12469 −0.297517
\(52\) 0.459031 0.0636562
\(53\) −2.99393 −0.411248 −0.205624 0.978631i \(-0.565922\pi\)
−0.205624 + 0.978631i \(0.565922\pi\)
\(54\) 4.42270 0.601853
\(55\) 0 0
\(56\) 10.6970 1.42945
\(57\) −0.0547434 −0.00725094
\(58\) 9.15607 1.20225
\(59\) −8.50860 −1.10773 −0.553863 0.832608i \(-0.686847\pi\)
−0.553863 + 0.832608i \(0.686847\pi\)
\(60\) 0 0
\(61\) 8.48037 1.08580 0.542900 0.839797i \(-0.317326\pi\)
0.542900 + 0.839797i \(0.317326\pi\)
\(62\) 9.18926 1.16704
\(63\) 9.73958 1.22707
\(64\) 8.53916 1.06739
\(65\) 0 0
\(66\) 0 0
\(67\) 13.4153 1.63894 0.819469 0.573123i \(-0.194268\pi\)
0.819469 + 0.573123i \(0.194268\pi\)
\(68\) −0.598640 −0.0725958
\(69\) 0.668808 0.0805150
\(70\) 0 0
\(71\) 8.30309 0.985396 0.492698 0.870200i \(-0.336011\pi\)
0.492698 + 0.870200i \(0.336011\pi\)
\(72\) 7.82272 0.921917
\(73\) −1.32003 −0.154498 −0.0772490 0.997012i \(-0.524614\pi\)
−0.0772490 + 0.997012i \(0.524614\pi\)
\(74\) −13.3396 −1.55069
\(75\) 0 0
\(76\) −0.0154241 −0.00176927
\(77\) 0 0
\(78\) 2.20866 0.250081
\(79\) 13.8661 1.56006 0.780028 0.625744i \(-0.215205\pi\)
0.780028 + 0.625744i \(0.215205\pi\)
\(80\) 0 0
\(81\) 6.12896 0.680995
\(82\) 11.2768 1.24531
\(83\) −10.6445 −1.16838 −0.584191 0.811616i \(-0.698588\pi\)
−0.584191 + 0.811616i \(0.698588\pi\)
\(84\) −0.340544 −0.0371564
\(85\) 0 0
\(86\) −4.02448 −0.433971
\(87\) −3.88682 −0.416710
\(88\) 0 0
\(89\) −12.1612 −1.28908 −0.644540 0.764570i \(-0.722951\pi\)
−0.644540 + 0.764570i \(0.722951\pi\)
\(90\) 0 0
\(91\) 10.3313 1.08302
\(92\) 0.188439 0.0196461
\(93\) −3.90091 −0.404505
\(94\) 3.01625 0.311102
\(95\) 0 0
\(96\) −0.526529 −0.0537387
\(97\) 4.33133 0.439780 0.219890 0.975525i \(-0.429430\pi\)
0.219890 + 0.975525i \(0.429430\pi\)
\(98\) 8.56545 0.865241
\(99\) 0 0
\(100\) 0 0
\(101\) −9.90570 −0.985654 −0.492827 0.870127i \(-0.664036\pi\)
−0.492827 + 0.870127i \(0.664036\pi\)
\(102\) −2.88039 −0.285201
\(103\) −4.06590 −0.400625 −0.200313 0.979732i \(-0.564196\pi\)
−0.200313 + 0.979732i \(0.564196\pi\)
\(104\) 8.29800 0.813686
\(105\) 0 0
\(106\) −4.05879 −0.394225
\(107\) 1.93858 0.187409 0.0937046 0.995600i \(-0.470129\pi\)
0.0937046 + 0.995600i \(0.470129\pi\)
\(108\) −0.528983 −0.0509014
\(109\) −6.12664 −0.586825 −0.293413 0.955986i \(-0.594791\pi\)
−0.293413 + 0.955986i \(0.594791\pi\)
\(110\) 0 0
\(111\) 5.66273 0.537483
\(112\) 13.3182 1.25845
\(113\) −5.78527 −0.544232 −0.272116 0.962264i \(-0.587724\pi\)
−0.272116 + 0.962264i \(0.587724\pi\)
\(114\) −0.0742142 −0.00695080
\(115\) 0 0
\(116\) −1.09512 −0.101680
\(117\) 7.55527 0.698485
\(118\) −11.5349 −1.06187
\(119\) −13.4735 −1.23511
\(120\) 0 0
\(121\) 0 0
\(122\) 11.4966 1.04085
\(123\) −4.78708 −0.431636
\(124\) −1.09909 −0.0987016
\(125\) 0 0
\(126\) 13.2037 1.17628
\(127\) 2.43783 0.216322 0.108161 0.994133i \(-0.465504\pi\)
0.108161 + 0.994133i \(0.465504\pi\)
\(128\) 9.74648 0.861475
\(129\) 1.70842 0.150418
\(130\) 0 0
\(131\) −7.04156 −0.615224 −0.307612 0.951512i \(-0.599530\pi\)
−0.307612 + 0.951512i \(0.599530\pi\)
\(132\) 0 0
\(133\) −0.347148 −0.0301016
\(134\) 18.1868 1.57110
\(135\) 0 0
\(136\) −10.8217 −0.927956
\(137\) 9.57286 0.817864 0.408932 0.912565i \(-0.365901\pi\)
0.408932 + 0.912565i \(0.365901\pi\)
\(138\) 0.906685 0.0771822
\(139\) −0.515502 −0.0437243 −0.0218621 0.999761i \(-0.506959\pi\)
−0.0218621 + 0.999761i \(0.506959\pi\)
\(140\) 0 0
\(141\) −1.28042 −0.107831
\(142\) 11.2563 0.944607
\(143\) 0 0
\(144\) 9.73958 0.811632
\(145\) 0 0
\(146\) −1.78953 −0.148103
\(147\) −3.63609 −0.299900
\(148\) 1.59550 0.131149
\(149\) 8.15983 0.668479 0.334240 0.942488i \(-0.391521\pi\)
0.334240 + 0.942488i \(0.391521\pi\)
\(150\) 0 0
\(151\) −1.94023 −0.157893 −0.0789466 0.996879i \(-0.525156\pi\)
−0.0789466 + 0.996879i \(0.525156\pi\)
\(152\) −0.278825 −0.0226157
\(153\) −9.85312 −0.796577
\(154\) 0 0
\(155\) 0 0
\(156\) −0.264169 −0.0211505
\(157\) −21.2745 −1.69789 −0.848944 0.528483i \(-0.822761\pi\)
−0.848944 + 0.528483i \(0.822761\pi\)
\(158\) 18.7979 1.49548
\(159\) 1.72298 0.136642
\(160\) 0 0
\(161\) 4.24116 0.334250
\(162\) 8.30887 0.652807
\(163\) 15.9810 1.25173 0.625863 0.779933i \(-0.284747\pi\)
0.625863 + 0.779933i \(0.284747\pi\)
\(164\) −1.34878 −0.105322
\(165\) 0 0
\(166\) −14.4304 −1.12002
\(167\) 17.7090 1.37037 0.685183 0.728371i \(-0.259722\pi\)
0.685183 + 0.728371i \(0.259722\pi\)
\(168\) −6.15607 −0.474951
\(169\) −4.98569 −0.383515
\(170\) 0 0
\(171\) −0.253869 −0.0194138
\(172\) 0.481353 0.0367029
\(173\) 15.8855 1.20775 0.603875 0.797079i \(-0.293622\pi\)
0.603875 + 0.797079i \(0.293622\pi\)
\(174\) −5.26926 −0.399461
\(175\) 0 0
\(176\) 0 0
\(177\) 4.89664 0.368054
\(178\) −16.4866 −1.23572
\(179\) −16.8810 −1.26175 −0.630874 0.775885i \(-0.717304\pi\)
−0.630874 + 0.775885i \(0.717304\pi\)
\(180\) 0 0
\(181\) −24.0874 −1.79040 −0.895200 0.445664i \(-0.852968\pi\)
−0.895200 + 0.445664i \(0.852968\pi\)
\(182\) 14.0059 1.03819
\(183\) −4.88039 −0.360769
\(184\) 3.40645 0.251127
\(185\) 0 0
\(186\) −5.28836 −0.387761
\(187\) 0 0
\(188\) −0.360762 −0.0263113
\(189\) −11.9057 −0.866012
\(190\) 0 0
\(191\) 5.38279 0.389485 0.194743 0.980854i \(-0.437613\pi\)
0.194743 + 0.980854i \(0.437613\pi\)
\(192\) −4.91423 −0.354654
\(193\) 18.2840 1.31611 0.658057 0.752968i \(-0.271378\pi\)
0.658057 + 0.752968i \(0.271378\pi\)
\(194\) 5.87187 0.421576
\(195\) 0 0
\(196\) −1.02448 −0.0731773
\(197\) 2.64566 0.188496 0.0942478 0.995549i \(-0.469955\pi\)
0.0942478 + 0.995549i \(0.469955\pi\)
\(198\) 0 0
\(199\) 6.52800 0.462757 0.231379 0.972864i \(-0.425676\pi\)
0.231379 + 0.972864i \(0.425676\pi\)
\(200\) 0 0
\(201\) −7.72041 −0.544555
\(202\) −13.4289 −0.944854
\(203\) −24.6477 −1.72993
\(204\) 0.344513 0.0241208
\(205\) 0 0
\(206\) −5.51204 −0.384042
\(207\) 3.10155 0.215572
\(208\) 10.3313 0.716349
\(209\) 0 0
\(210\) 0 0
\(211\) 27.4478 1.88958 0.944792 0.327671i \(-0.106264\pi\)
0.944792 + 0.327671i \(0.106264\pi\)
\(212\) 0.485457 0.0333413
\(213\) −4.77837 −0.327409
\(214\) 2.62808 0.179652
\(215\) 0 0
\(216\) −9.56252 −0.650647
\(217\) −24.7371 −1.67926
\(218\) −8.30573 −0.562535
\(219\) 0.759669 0.0513337
\(220\) 0 0
\(221\) −10.4518 −0.703061
\(222\) 7.67682 0.515235
\(223\) 5.08194 0.340312 0.170156 0.985417i \(-0.445573\pi\)
0.170156 + 0.985417i \(0.445573\pi\)
\(224\) −3.33892 −0.223091
\(225\) 0 0
\(226\) −7.84294 −0.521705
\(227\) 3.73980 0.248219 0.124110 0.992269i \(-0.460393\pi\)
0.124110 + 0.992269i \(0.460393\pi\)
\(228\) 0.00887649 0.000587860 0
\(229\) 26.9241 1.77920 0.889598 0.456745i \(-0.150985\pi\)
0.889598 + 0.456745i \(0.150985\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −19.7968 −1.29972
\(233\) 18.3167 1.19997 0.599984 0.800012i \(-0.295174\pi\)
0.599984 + 0.800012i \(0.295174\pi\)
\(234\) 10.2425 0.669573
\(235\) 0 0
\(236\) 1.37965 0.0898073
\(237\) −7.97984 −0.518346
\(238\) −18.2656 −1.18399
\(239\) 10.9559 0.708676 0.354338 0.935117i \(-0.384706\pi\)
0.354338 + 0.935117i \(0.384706\pi\)
\(240\) 0 0
\(241\) 9.99444 0.643798 0.321899 0.946774i \(-0.395679\pi\)
0.321899 + 0.946774i \(0.395679\pi\)
\(242\) 0 0
\(243\) −13.3143 −0.854110
\(244\) −1.37507 −0.0880297
\(245\) 0 0
\(246\) −6.48972 −0.413769
\(247\) −0.269293 −0.0171347
\(248\) −19.8685 −1.26165
\(249\) 6.12581 0.388208
\(250\) 0 0
\(251\) 9.65743 0.609572 0.304786 0.952421i \(-0.401415\pi\)
0.304786 + 0.952421i \(0.401415\pi\)
\(252\) −1.57925 −0.0994832
\(253\) 0 0
\(254\) 3.30490 0.207368
\(255\) 0 0
\(256\) −3.86526 −0.241579
\(257\) −10.4276 −0.650454 −0.325227 0.945636i \(-0.605441\pi\)
−0.325227 + 0.945636i \(0.605441\pi\)
\(258\) 2.31606 0.144192
\(259\) 35.9095 2.23131
\(260\) 0 0
\(261\) −18.0248 −1.11571
\(262\) −9.54606 −0.589757
\(263\) −10.9619 −0.675937 −0.337968 0.941157i \(-0.609740\pi\)
−0.337968 + 0.941157i \(0.609740\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.470620 −0.0288555
\(267\) 6.99867 0.428311
\(268\) −2.17525 −0.132875
\(269\) −0.0893449 −0.00544746 −0.00272373 0.999996i \(-0.500867\pi\)
−0.00272373 + 0.999996i \(0.500867\pi\)
\(270\) 0 0
\(271\) 13.3996 0.813965 0.406982 0.913436i \(-0.366581\pi\)
0.406982 + 0.913436i \(0.366581\pi\)
\(272\) −13.4735 −0.816949
\(273\) −5.94561 −0.359844
\(274\) 12.9777 0.784010
\(275\) 0 0
\(276\) −0.108445 −0.00652764
\(277\) −3.90669 −0.234730 −0.117365 0.993089i \(-0.537445\pi\)
−0.117365 + 0.993089i \(0.537445\pi\)
\(278\) −0.698853 −0.0419144
\(279\) −18.0902 −1.08303
\(280\) 0 0
\(281\) 1.53743 0.0917155 0.0458577 0.998948i \(-0.485398\pi\)
0.0458577 + 0.998948i \(0.485398\pi\)
\(282\) −1.73583 −0.103367
\(283\) −5.41170 −0.321692 −0.160846 0.986980i \(-0.551422\pi\)
−0.160846 + 0.986980i \(0.551422\pi\)
\(284\) −1.34632 −0.0798896
\(285\) 0 0
\(286\) 0 0
\(287\) −30.3566 −1.79190
\(288\) −2.44174 −0.143881
\(289\) −3.36947 −0.198204
\(290\) 0 0
\(291\) −2.49265 −0.146122
\(292\) 0.214039 0.0125257
\(293\) 11.4165 0.666958 0.333479 0.942757i \(-0.391777\pi\)
0.333479 + 0.942757i \(0.391777\pi\)
\(294\) −4.92936 −0.287486
\(295\) 0 0
\(296\) 28.8421 1.67641
\(297\) 0 0
\(298\) 11.0621 0.640808
\(299\) 3.28999 0.190265
\(300\) 0 0
\(301\) 10.8337 0.624445
\(302\) −2.63031 −0.151358
\(303\) 5.70066 0.327494
\(304\) −0.347148 −0.0199103
\(305\) 0 0
\(306\) −13.3576 −0.763604
\(307\) −4.25008 −0.242565 −0.121282 0.992618i \(-0.538701\pi\)
−0.121282 + 0.992618i \(0.538701\pi\)
\(308\) 0 0
\(309\) 2.33990 0.133112
\(310\) 0 0
\(311\) −16.6195 −0.942404 −0.471202 0.882025i \(-0.656180\pi\)
−0.471202 + 0.882025i \(0.656180\pi\)
\(312\) −4.77544 −0.270356
\(313\) 26.5770 1.50222 0.751109 0.660178i \(-0.229519\pi\)
0.751109 + 0.660178i \(0.229519\pi\)
\(314\) −28.8413 −1.62761
\(315\) 0 0
\(316\) −2.24835 −0.126479
\(317\) −5.79694 −0.325589 −0.162794 0.986660i \(-0.552051\pi\)
−0.162794 + 0.986660i \(0.552051\pi\)
\(318\) 2.33581 0.130985
\(319\) 0 0
\(320\) 0 0
\(321\) −1.11564 −0.0622688
\(322\) 5.74963 0.320414
\(323\) 0.351195 0.0195410
\(324\) −0.993793 −0.0552107
\(325\) 0 0
\(326\) 21.6650 1.19991
\(327\) 3.52584 0.194979
\(328\) −24.3821 −1.34628
\(329\) −8.11961 −0.447648
\(330\) 0 0
\(331\) −12.9230 −0.710311 −0.355155 0.934807i \(-0.615572\pi\)
−0.355155 + 0.934807i \(0.615572\pi\)
\(332\) 1.72597 0.0947249
\(333\) 26.2605 1.43907
\(334\) 24.0077 1.31364
\(335\) 0 0
\(336\) −7.66454 −0.418135
\(337\) 13.3854 0.729148 0.364574 0.931174i \(-0.381215\pi\)
0.364574 + 0.931174i \(0.381215\pi\)
\(338\) −6.75898 −0.367640
\(339\) 3.32938 0.180827
\(340\) 0 0
\(341\) 0 0
\(342\) −0.344163 −0.0186102
\(343\) 2.48809 0.134344
\(344\) 8.70152 0.469155
\(345\) 0 0
\(346\) 21.5355 1.15776
\(347\) −8.44899 −0.453565 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(348\) 0.630236 0.0337842
\(349\) 10.3988 0.556636 0.278318 0.960489i \(-0.410223\pi\)
0.278318 + 0.960489i \(0.410223\pi\)
\(350\) 0 0
\(351\) −9.23559 −0.492959
\(352\) 0 0
\(353\) −19.1073 −1.01698 −0.508489 0.861069i \(-0.669796\pi\)
−0.508489 + 0.861069i \(0.669796\pi\)
\(354\) 6.63825 0.352819
\(355\) 0 0
\(356\) 1.97190 0.104510
\(357\) 7.75389 0.410379
\(358\) −22.8852 −1.20952
\(359\) 4.41417 0.232971 0.116486 0.993192i \(-0.462837\pi\)
0.116486 + 0.993192i \(0.462837\pi\)
\(360\) 0 0
\(361\) −18.9910 −0.999524
\(362\) −32.6546 −1.71629
\(363\) 0 0
\(364\) −1.67520 −0.0878041
\(365\) 0 0
\(366\) −6.61622 −0.345836
\(367\) 29.3617 1.53267 0.766335 0.642442i \(-0.222078\pi\)
0.766335 + 0.642442i \(0.222078\pi\)
\(368\) 4.24116 0.221086
\(369\) −22.1997 −1.15567
\(370\) 0 0
\(371\) 10.9261 0.567254
\(372\) 0.632521 0.0327947
\(373\) −4.96478 −0.257067 −0.128533 0.991705i \(-0.541027\pi\)
−0.128533 + 0.991705i \(0.541027\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.52157 −0.336325
\(377\) −19.1200 −0.984728
\(378\) −16.1403 −0.830165
\(379\) 7.92315 0.406985 0.203492 0.979077i \(-0.434771\pi\)
0.203492 + 0.979077i \(0.434771\pi\)
\(380\) 0 0
\(381\) −1.40295 −0.0718755
\(382\) 7.29731 0.373363
\(383\) 24.5155 1.25268 0.626342 0.779549i \(-0.284551\pi\)
0.626342 + 0.779549i \(0.284551\pi\)
\(384\) −5.60903 −0.286235
\(385\) 0 0
\(386\) 24.7872 1.26164
\(387\) 7.92268 0.402732
\(388\) −0.702312 −0.0356545
\(389\) 5.46094 0.276881 0.138440 0.990371i \(-0.455791\pi\)
0.138440 + 0.990371i \(0.455791\pi\)
\(390\) 0 0
\(391\) −4.29059 −0.216985
\(392\) −18.5198 −0.935389
\(393\) 4.05237 0.204415
\(394\) 3.58665 0.180693
\(395\) 0 0
\(396\) 0 0
\(397\) 6.43455 0.322941 0.161470 0.986878i \(-0.448376\pi\)
0.161470 + 0.986878i \(0.448376\pi\)
\(398\) 8.84984 0.443602
\(399\) 0.199781 0.0100016
\(400\) 0 0
\(401\) −14.7026 −0.734213 −0.367107 0.930179i \(-0.619652\pi\)
−0.367107 + 0.930179i \(0.619652\pi\)
\(402\) −10.4664 −0.522014
\(403\) −19.1893 −0.955885
\(404\) 1.60618 0.0799105
\(405\) 0 0
\(406\) −33.4143 −1.65832
\(407\) 0 0
\(408\) 6.22784 0.308324
\(409\) −4.39576 −0.217356 −0.108678 0.994077i \(-0.534662\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(410\) 0 0
\(411\) −5.50911 −0.271745
\(412\) 0.659275 0.0324802
\(413\) 31.0514 1.52794
\(414\) 4.20469 0.206649
\(415\) 0 0
\(416\) −2.59009 −0.126990
\(417\) 0.296668 0.0145279
\(418\) 0 0
\(419\) 17.8526 0.872159 0.436079 0.899908i \(-0.356367\pi\)
0.436079 + 0.899908i \(0.356367\pi\)
\(420\) 0 0
\(421\) −4.82854 −0.235328 −0.117664 0.993053i \(-0.537541\pi\)
−0.117664 + 0.993053i \(0.537541\pi\)
\(422\) 37.2103 1.81137
\(423\) −5.93785 −0.288708
\(424\) 8.77570 0.426186
\(425\) 0 0
\(426\) −6.47792 −0.313856
\(427\) −30.9484 −1.49770
\(428\) −0.314335 −0.0151939
\(429\) 0 0
\(430\) 0 0
\(431\) 24.8739 1.19814 0.599068 0.800698i \(-0.295538\pi\)
0.599068 + 0.800698i \(0.295538\pi\)
\(432\) −11.9057 −0.572813
\(433\) 21.2502 1.02122 0.510611 0.859812i \(-0.329419\pi\)
0.510611 + 0.859812i \(0.329419\pi\)
\(434\) −33.5354 −1.60975
\(435\) 0 0
\(436\) 0.993417 0.0475761
\(437\) −0.110548 −0.00528825
\(438\) 1.02986 0.0492088
\(439\) 15.9119 0.759434 0.379717 0.925103i \(-0.376021\pi\)
0.379717 + 0.925103i \(0.376021\pi\)
\(440\) 0 0
\(441\) −16.8621 −0.802958
\(442\) −14.1692 −0.673959
\(443\) −26.2876 −1.24896 −0.624481 0.781040i \(-0.714690\pi\)
−0.624481 + 0.781040i \(0.714690\pi\)
\(444\) −0.918197 −0.0435757
\(445\) 0 0
\(446\) 6.88945 0.326225
\(447\) −4.69592 −0.222110
\(448\) −31.1629 −1.47231
\(449\) −8.18961 −0.386492 −0.193246 0.981150i \(-0.561902\pi\)
−0.193246 + 0.981150i \(0.561902\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.938065 0.0441229
\(453\) 1.11659 0.0524618
\(454\) 5.06995 0.237945
\(455\) 0 0
\(456\) 0.160462 0.00751432
\(457\) 11.9164 0.557425 0.278713 0.960375i \(-0.410092\pi\)
0.278713 + 0.960375i \(0.410092\pi\)
\(458\) 36.5003 1.70555
\(459\) 12.0445 0.562188
\(460\) 0 0
\(461\) −6.96172 −0.324240 −0.162120 0.986771i \(-0.551833\pi\)
−0.162120 + 0.986771i \(0.551833\pi\)
\(462\) 0 0
\(463\) −12.4762 −0.579817 −0.289909 0.957054i \(-0.593625\pi\)
−0.289909 + 0.957054i \(0.593625\pi\)
\(464\) −24.6477 −1.14424
\(465\) 0 0
\(466\) 24.8315 1.15030
\(467\) 6.14617 0.284411 0.142205 0.989837i \(-0.454581\pi\)
0.142205 + 0.989837i \(0.454581\pi\)
\(468\) −1.22507 −0.0566287
\(469\) −48.9579 −2.26067
\(470\) 0 0
\(471\) 12.2433 0.564142
\(472\) 24.9401 1.14796
\(473\) 0 0
\(474\) −10.8181 −0.496890
\(475\) 0 0
\(476\) 2.18469 0.100135
\(477\) 7.99022 0.365847
\(478\) 14.8526 0.679341
\(479\) −22.1942 −1.01408 −0.507039 0.861923i \(-0.669260\pi\)
−0.507039 + 0.861923i \(0.669260\pi\)
\(480\) 0 0
\(481\) 27.8560 1.27013
\(482\) 13.5492 0.617149
\(483\) −2.44076 −0.111058
\(484\) 0 0
\(485\) 0 0
\(486\) −18.0498 −0.818755
\(487\) 34.2306 1.55114 0.775569 0.631263i \(-0.217463\pi\)
0.775569 + 0.631263i \(0.217463\pi\)
\(488\) −24.8574 −1.12524
\(489\) −9.19693 −0.415900
\(490\) 0 0
\(491\) 16.9957 0.767007 0.383503 0.923539i \(-0.374717\pi\)
0.383503 + 0.923539i \(0.374717\pi\)
\(492\) 0.776212 0.0349943
\(493\) 24.9351 1.12302
\(494\) −0.365073 −0.0164254
\(495\) 0 0
\(496\) −24.7371 −1.11073
\(497\) −30.3014 −1.35920
\(498\) 8.30461 0.372138
\(499\) 5.22946 0.234103 0.117051 0.993126i \(-0.462656\pi\)
0.117051 + 0.993126i \(0.462656\pi\)
\(500\) 0 0
\(501\) −10.1914 −0.455319
\(502\) 13.0923 0.584339
\(503\) 41.9448 1.87023 0.935113 0.354350i \(-0.115298\pi\)
0.935113 + 0.354350i \(0.115298\pi\)
\(504\) −28.5484 −1.27164
\(505\) 0 0
\(506\) 0 0
\(507\) 2.86923 0.127427
\(508\) −0.395287 −0.0175380
\(509\) 20.3678 0.902787 0.451393 0.892325i \(-0.350927\pi\)
0.451393 + 0.892325i \(0.350927\pi\)
\(510\) 0 0
\(511\) 4.81734 0.213107
\(512\) −24.7330 −1.09305
\(513\) 0.310330 0.0137014
\(514\) −14.1364 −0.623529
\(515\) 0 0
\(516\) −0.277016 −0.0121949
\(517\) 0 0
\(518\) 48.6816 2.13895
\(519\) −9.14199 −0.401289
\(520\) 0 0
\(521\) 14.4779 0.634287 0.317143 0.948378i \(-0.397276\pi\)
0.317143 + 0.948378i \(0.397276\pi\)
\(522\) −24.4358 −1.06953
\(523\) 11.1601 0.487998 0.243999 0.969775i \(-0.421541\pi\)
0.243999 + 0.969775i \(0.421541\pi\)
\(524\) 1.14177 0.0498784
\(525\) 0 0
\(526\) −14.8607 −0.647958
\(527\) 25.0254 1.09013
\(528\) 0 0
\(529\) −21.6494 −0.941279
\(530\) 0 0
\(531\) 22.7078 0.985436
\(532\) 0.0562891 0.00244044
\(533\) −23.5485 −1.02000
\(534\) 9.48791 0.410582
\(535\) 0 0
\(536\) −39.3225 −1.69847
\(537\) 9.71492 0.419230
\(538\) −0.121123 −0.00522197
\(539\) 0 0
\(540\) 0 0
\(541\) −10.6808 −0.459203 −0.229602 0.973285i \(-0.573742\pi\)
−0.229602 + 0.973285i \(0.573742\pi\)
\(542\) 18.1654 0.780272
\(543\) 13.8621 0.594880
\(544\) 3.37784 0.144824
\(545\) 0 0
\(546\) −8.06031 −0.344949
\(547\) 1.74760 0.0747220 0.0373610 0.999302i \(-0.488105\pi\)
0.0373610 + 0.999302i \(0.488105\pi\)
\(548\) −1.55221 −0.0663072
\(549\) −22.6325 −0.965930
\(550\) 0 0
\(551\) 0.642459 0.0273697
\(552\) −1.96039 −0.0834396
\(553\) −50.6031 −2.15186
\(554\) −5.29619 −0.225014
\(555\) 0 0
\(556\) 0.0835872 0.00354489
\(557\) −19.4844 −0.825579 −0.412790 0.910826i \(-0.635446\pi\)
−0.412790 + 0.910826i \(0.635446\pi\)
\(558\) −24.5244 −1.03820
\(559\) 8.40403 0.355453
\(560\) 0 0
\(561\) 0 0
\(562\) 2.08426 0.0879191
\(563\) −14.6892 −0.619074 −0.309537 0.950887i \(-0.600174\pi\)
−0.309537 + 0.950887i \(0.600174\pi\)
\(564\) 0.207616 0.00874222
\(565\) 0 0
\(566\) −7.33650 −0.308376
\(567\) −22.3671 −0.939330
\(568\) −24.3377 −1.02119
\(569\) −19.9335 −0.835658 −0.417829 0.908526i \(-0.637209\pi\)
−0.417829 + 0.908526i \(0.637209\pi\)
\(570\) 0 0
\(571\) −5.24422 −0.219464 −0.109732 0.993961i \(-0.534999\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(572\) 0 0
\(573\) −3.09776 −0.129411
\(574\) −41.1537 −1.71772
\(575\) 0 0
\(576\) −22.7894 −0.949557
\(577\) −37.6004 −1.56533 −0.782663 0.622446i \(-0.786139\pi\)
−0.782663 + 0.622446i \(0.786139\pi\)
\(578\) −4.56790 −0.190000
\(579\) −10.5223 −0.437294
\(580\) 0 0
\(581\) 38.8460 1.61161
\(582\) −3.37922 −0.140073
\(583\) 0 0
\(584\) 3.86923 0.160110
\(585\) 0 0
\(586\) 15.4770 0.639351
\(587\) −25.5711 −1.05543 −0.527716 0.849421i \(-0.676952\pi\)
−0.527716 + 0.849421i \(0.676952\pi\)
\(588\) 0.589582 0.0243140
\(589\) 0.644788 0.0265680
\(590\) 0 0
\(591\) −1.52256 −0.0626297
\(592\) 35.9095 1.47587
\(593\) 40.2260 1.65188 0.825942 0.563754i \(-0.190644\pi\)
0.825942 + 0.563754i \(0.190644\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.32309 −0.0541960
\(597\) −3.75682 −0.153756
\(598\) 4.46015 0.182389
\(599\) 4.92997 0.201433 0.100716 0.994915i \(-0.467886\pi\)
0.100716 + 0.994915i \(0.467886\pi\)
\(600\) 0 0
\(601\) −46.0896 −1.88003 −0.940017 0.341127i \(-0.889191\pi\)
−0.940017 + 0.341127i \(0.889191\pi\)
\(602\) 14.6870 0.598597
\(603\) −35.8028 −1.45800
\(604\) 0.314602 0.0128010
\(605\) 0 0
\(606\) 7.72824 0.313938
\(607\) −45.1365 −1.83203 −0.916016 0.401141i \(-0.868614\pi\)
−0.916016 + 0.401141i \(0.868614\pi\)
\(608\) 0.0870310 0.00352957
\(609\) 14.1846 0.574789
\(610\) 0 0
\(611\) −6.29861 −0.254815
\(612\) 1.59766 0.0645814
\(613\) 4.73418 0.191212 0.0956059 0.995419i \(-0.469521\pi\)
0.0956059 + 0.995419i \(0.469521\pi\)
\(614\) −5.76172 −0.232524
\(615\) 0 0
\(616\) 0 0
\(617\) −17.8468 −0.718486 −0.359243 0.933244i \(-0.616965\pi\)
−0.359243 + 0.933244i \(0.616965\pi\)
\(618\) 3.17214 0.127602
\(619\) 0.356952 0.0143471 0.00717356 0.999974i \(-0.497717\pi\)
0.00717356 + 0.999974i \(0.497717\pi\)
\(620\) 0 0
\(621\) −3.79134 −0.152141
\(622\) −22.5306 −0.903394
\(623\) 44.3811 1.77809
\(624\) −5.94561 −0.238015
\(625\) 0 0
\(626\) 36.0297 1.44004
\(627\) 0 0
\(628\) 3.44960 0.137654
\(629\) −36.3281 −1.44850
\(630\) 0 0
\(631\) −31.9922 −1.27359 −0.636795 0.771033i \(-0.719740\pi\)
−0.636795 + 0.771033i \(0.719740\pi\)
\(632\) −40.6438 −1.61672
\(633\) −15.7960 −0.627835
\(634\) −7.85876 −0.312111
\(635\) 0 0
\(636\) −0.279377 −0.0110780
\(637\) −17.8866 −0.708693
\(638\) 0 0
\(639\) −22.1594 −0.876610
\(640\) 0 0
\(641\) 1.01285 0.0400050 0.0200025 0.999800i \(-0.493633\pi\)
0.0200025 + 0.999800i \(0.493633\pi\)
\(642\) −1.51244 −0.0596912
\(643\) 14.9724 0.590455 0.295228 0.955427i \(-0.404605\pi\)
0.295228 + 0.955427i \(0.404605\pi\)
\(644\) −0.687692 −0.0270988
\(645\) 0 0
\(646\) 0.476106 0.0187321
\(647\) −17.8873 −0.703224 −0.351612 0.936146i \(-0.614366\pi\)
−0.351612 + 0.936146i \(0.614366\pi\)
\(648\) −17.9650 −0.705732
\(649\) 0 0
\(650\) 0 0
\(651\) 14.2360 0.557954
\(652\) −2.59127 −0.101482
\(653\) −45.7642 −1.79089 −0.895446 0.445169i \(-0.853144\pi\)
−0.895446 + 0.445169i \(0.853144\pi\)
\(654\) 4.77989 0.186908
\(655\) 0 0
\(656\) −30.3566 −1.18523
\(657\) 3.52291 0.137442
\(658\) −11.0075 −0.429119
\(659\) 9.54036 0.371640 0.185820 0.982584i \(-0.440506\pi\)
0.185820 + 0.982584i \(0.440506\pi\)
\(660\) 0 0
\(661\) 15.7769 0.613651 0.306825 0.951766i \(-0.400733\pi\)
0.306825 + 0.951766i \(0.400733\pi\)
\(662\) −17.5193 −0.680908
\(663\) 6.01491 0.233600
\(664\) 31.2007 1.21082
\(665\) 0 0
\(666\) 35.6007 1.37950
\(667\) −7.84901 −0.303915
\(668\) −2.87147 −0.111100
\(669\) −2.92462 −0.113072
\(670\) 0 0
\(671\) 0 0
\(672\) 1.92152 0.0741243
\(673\) 47.3031 1.82340 0.911700 0.410856i \(-0.134770\pi\)
0.911700 + 0.410856i \(0.134770\pi\)
\(674\) 18.1462 0.698966
\(675\) 0 0
\(676\) 0.808416 0.0310929
\(677\) 27.5431 1.05857 0.529284 0.848445i \(-0.322461\pi\)
0.529284 + 0.848445i \(0.322461\pi\)
\(678\) 4.51356 0.173342
\(679\) −15.8068 −0.606609
\(680\) 0 0
\(681\) −2.15223 −0.0824736
\(682\) 0 0
\(683\) 27.1617 1.03931 0.519656 0.854375i \(-0.326060\pi\)
0.519656 + 0.854375i \(0.326060\pi\)
\(684\) 0.0411641 0.00157395
\(685\) 0 0
\(686\) 3.37304 0.128783
\(687\) −15.4946 −0.591157
\(688\) 10.8337 0.413032
\(689\) 8.47567 0.322897
\(690\) 0 0
\(691\) −7.52680 −0.286333 −0.143166 0.989699i \(-0.545728\pi\)
−0.143166 + 0.989699i \(0.545728\pi\)
\(692\) −2.57579 −0.0979167
\(693\) 0 0
\(694\) −11.4541 −0.434791
\(695\) 0 0
\(696\) 11.3929 0.431847
\(697\) 30.7105 1.16324
\(698\) 14.0974 0.533595
\(699\) −10.5411 −0.398702
\(700\) 0 0
\(701\) 31.8207 1.20185 0.600926 0.799305i \(-0.294799\pi\)
0.600926 + 0.799305i \(0.294799\pi\)
\(702\) −12.5205 −0.472554
\(703\) −0.936004 −0.0353021
\(704\) 0 0
\(705\) 0 0
\(706\) −25.9032 −0.974882
\(707\) 36.1500 1.35956
\(708\) −0.793977 −0.0298395
\(709\) −14.4381 −0.542235 −0.271118 0.962546i \(-0.587393\pi\)
−0.271118 + 0.962546i \(0.587393\pi\)
\(710\) 0 0
\(711\) −37.0059 −1.38783
\(712\) 35.6464 1.33591
\(713\) −7.87747 −0.295013
\(714\) 10.5117 0.393392
\(715\) 0 0
\(716\) 2.73721 0.102294
\(717\) −6.30503 −0.235465
\(718\) 5.98418 0.223328
\(719\) 5.41004 0.201761 0.100880 0.994899i \(-0.467834\pi\)
0.100880 + 0.994899i \(0.467834\pi\)
\(720\) 0 0
\(721\) 14.8382 0.552602
\(722\) −25.7455 −0.958150
\(723\) −5.75173 −0.213909
\(724\) 3.90570 0.145154
\(725\) 0 0
\(726\) 0 0
\(727\) 16.7753 0.622161 0.311080 0.950384i \(-0.399309\pi\)
0.311080 + 0.950384i \(0.399309\pi\)
\(728\) −30.2828 −1.12236
\(729\) −10.7246 −0.397208
\(730\) 0 0
\(731\) −10.9600 −0.405371
\(732\) 0.791342 0.0292488
\(733\) −14.0851 −0.520243 −0.260122 0.965576i \(-0.583763\pi\)
−0.260122 + 0.965576i \(0.583763\pi\)
\(734\) 39.8049 1.46923
\(735\) 0 0
\(736\) −1.06327 −0.0391926
\(737\) 0 0
\(738\) −30.0956 −1.10783
\(739\) 36.3457 1.33700 0.668499 0.743713i \(-0.266937\pi\)
0.668499 + 0.743713i \(0.266937\pi\)
\(740\) 0 0
\(741\) 0.154976 0.00569319
\(742\) 14.8122 0.543773
\(743\) −1.95716 −0.0718012 −0.0359006 0.999355i \(-0.511430\pi\)
−0.0359006 + 0.999355i \(0.511430\pi\)
\(744\) 11.4342 0.419198
\(745\) 0 0
\(746\) −6.73063 −0.246426
\(747\) 28.4080 1.03939
\(748\) 0 0
\(749\) −7.07466 −0.258503
\(750\) 0 0
\(751\) 18.7106 0.682759 0.341379 0.939926i \(-0.389106\pi\)
0.341379 + 0.939926i \(0.389106\pi\)
\(752\) −8.11961 −0.296092
\(753\) −5.55778 −0.202537
\(754\) −25.9204 −0.943967
\(755\) 0 0
\(756\) 1.93048 0.0702107
\(757\) 14.5470 0.528721 0.264361 0.964424i \(-0.414839\pi\)
0.264361 + 0.964424i \(0.414839\pi\)
\(758\) 10.7412 0.390138
\(759\) 0 0
\(760\) 0 0
\(761\) −13.1406 −0.476345 −0.238173 0.971223i \(-0.576548\pi\)
−0.238173 + 0.971223i \(0.576548\pi\)
\(762\) −1.90195 −0.0689003
\(763\) 22.3586 0.809437
\(764\) −0.872805 −0.0315770
\(765\) 0 0
\(766\) 33.2350 1.20083
\(767\) 24.0875 0.869748
\(768\) 2.22443 0.0802673
\(769\) −38.9767 −1.40554 −0.702768 0.711419i \(-0.748053\pi\)
−0.702768 + 0.711419i \(0.748053\pi\)
\(770\) 0 0
\(771\) 6.00099 0.216121
\(772\) −2.96471 −0.106702
\(773\) 38.7539 1.39388 0.696940 0.717129i \(-0.254544\pi\)
0.696940 + 0.717129i \(0.254544\pi\)
\(774\) 10.7406 0.386062
\(775\) 0 0
\(776\) −12.6958 −0.455754
\(777\) −20.6657 −0.741377
\(778\) 7.40326 0.265420
\(779\) 0.791265 0.0283500
\(780\) 0 0
\(781\) 0 0
\(782\) −5.81665 −0.208003
\(783\) 22.0336 0.787417
\(784\) −23.0578 −0.823493
\(785\) 0 0
\(786\) 5.49369 0.195953
\(787\) −21.3842 −0.762265 −0.381132 0.924521i \(-0.624466\pi\)
−0.381132 + 0.924521i \(0.624466\pi\)
\(788\) −0.428986 −0.0152820
\(789\) 6.30847 0.224588
\(790\) 0 0
\(791\) 21.1128 0.750686
\(792\) 0 0
\(793\) −24.0075 −0.852533
\(794\) 8.72315 0.309573
\(795\) 0 0
\(796\) −1.05850 −0.0375174
\(797\) 2.22456 0.0787978 0.0393989 0.999224i \(-0.487456\pi\)
0.0393989 + 0.999224i \(0.487456\pi\)
\(798\) 0.270838 0.00958757
\(799\) 8.21426 0.290599
\(800\) 0 0
\(801\) 32.4558 1.14677
\(802\) −19.9319 −0.703821
\(803\) 0 0
\(804\) 1.25184 0.0441491
\(805\) 0 0
\(806\) −26.0144 −0.916318
\(807\) 0.0514174 0.00180998
\(808\) 29.0353 1.02146
\(809\) −21.1682 −0.744234 −0.372117 0.928186i \(-0.621368\pi\)
−0.372117 + 0.928186i \(0.621368\pi\)
\(810\) 0 0
\(811\) 36.7172 1.28932 0.644658 0.764471i \(-0.277000\pi\)
0.644658 + 0.764471i \(0.277000\pi\)
\(812\) 3.99656 0.140252
\(813\) −7.71135 −0.270449
\(814\) 0 0
\(815\) 0 0
\(816\) 7.75389 0.271440
\(817\) −0.282388 −0.00987951
\(818\) −5.95922 −0.208359
\(819\) −27.5723 −0.963455
\(820\) 0 0
\(821\) 39.6693 1.38447 0.692235 0.721673i \(-0.256626\pi\)
0.692235 + 0.721673i \(0.256626\pi\)
\(822\) −7.46856 −0.260496
\(823\) 45.9283 1.60096 0.800480 0.599359i \(-0.204578\pi\)
0.800480 + 0.599359i \(0.204578\pi\)
\(824\) 11.9178 0.415178
\(825\) 0 0
\(826\) 42.0956 1.46469
\(827\) −39.6949 −1.38033 −0.690164 0.723653i \(-0.742462\pi\)
−0.690164 + 0.723653i \(0.742462\pi\)
\(828\) −0.502907 −0.0174772
\(829\) 7.65584 0.265898 0.132949 0.991123i \(-0.457555\pi\)
0.132949 + 0.991123i \(0.457555\pi\)
\(830\) 0 0
\(831\) 2.24827 0.0779916
\(832\) −24.1740 −0.838082
\(833\) 23.3266 0.808218
\(834\) 0.402185 0.0139265
\(835\) 0 0
\(836\) 0 0
\(837\) 22.1135 0.764354
\(838\) 24.2024 0.836057
\(839\) 27.5886 0.952465 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(840\) 0 0
\(841\) 16.6150 0.572932
\(842\) −6.54592 −0.225587
\(843\) −0.884781 −0.0304735
\(844\) −4.45058 −0.153195
\(845\) 0 0
\(846\) −8.04979 −0.276757
\(847\) 0 0
\(848\) 10.9261 0.375203
\(849\) 3.11439 0.106886
\(850\) 0 0
\(851\) 11.4353 0.391997
\(852\) 0.774800 0.0265442
\(853\) 42.1496 1.44318 0.721588 0.692323i \(-0.243413\pi\)
0.721588 + 0.692323i \(0.243413\pi\)
\(854\) −41.9559 −1.43570
\(855\) 0 0
\(856\) −5.68229 −0.194217
\(857\) −45.0850 −1.54008 −0.770038 0.637998i \(-0.779763\pi\)
−0.770038 + 0.637998i \(0.779763\pi\)
\(858\) 0 0
\(859\) −11.8257 −0.403488 −0.201744 0.979438i \(-0.564661\pi\)
−0.201744 + 0.979438i \(0.564661\pi\)
\(860\) 0 0
\(861\) 17.4700 0.595377
\(862\) 33.7210 1.14854
\(863\) −27.8713 −0.948750 −0.474375 0.880323i \(-0.657326\pi\)
−0.474375 + 0.880323i \(0.657326\pi\)
\(864\) 2.98479 0.101545
\(865\) 0 0
\(866\) 28.8084 0.978950
\(867\) 1.93911 0.0658555
\(868\) 4.01105 0.136144
\(869\) 0 0
\(870\) 0 0
\(871\) −37.9781 −1.28684
\(872\) 17.9582 0.608141
\(873\) −11.5595 −0.391229
\(874\) −0.149868 −0.00506935
\(875\) 0 0
\(876\) −0.123178 −0.00416181
\(877\) −11.4471 −0.386543 −0.193271 0.981145i \(-0.561910\pi\)
−0.193271 + 0.981145i \(0.561910\pi\)
\(878\) 21.5714 0.727998
\(879\) −6.57011 −0.221604
\(880\) 0 0
\(881\) 47.0037 1.58360 0.791798 0.610783i \(-0.209145\pi\)
0.791798 + 0.610783i \(0.209145\pi\)
\(882\) −22.8595 −0.769721
\(883\) 46.9146 1.57880 0.789401 0.613877i \(-0.210391\pi\)
0.789401 + 0.613877i \(0.210391\pi\)
\(884\) 1.69472 0.0569997
\(885\) 0 0
\(886\) −35.6374 −1.19726
\(887\) −27.8427 −0.934866 −0.467433 0.884029i \(-0.654821\pi\)
−0.467433 + 0.884029i \(0.654821\pi\)
\(888\) −16.5984 −0.557007
\(889\) −8.89664 −0.298384
\(890\) 0 0
\(891\) 0 0
\(892\) −0.824022 −0.0275903
\(893\) 0.211643 0.00708236
\(894\) −6.36614 −0.212916
\(895\) 0 0
\(896\) −35.5689 −1.18828
\(897\) −1.89336 −0.0632176
\(898\) −11.1024 −0.370494
\(899\) 45.7804 1.52686
\(900\) 0 0
\(901\) −11.0534 −0.368244
\(902\) 0 0
\(903\) −6.23473 −0.207479
\(904\) 16.9576 0.564001
\(905\) 0 0
\(906\) 1.51373 0.0502902
\(907\) 28.6233 0.950421 0.475210 0.879872i \(-0.342372\pi\)
0.475210 + 0.879872i \(0.342372\pi\)
\(908\) −0.606398 −0.0201240
\(909\) 26.4364 0.876840
\(910\) 0 0
\(911\) 5.12823 0.169906 0.0849529 0.996385i \(-0.472926\pi\)
0.0849529 + 0.996385i \(0.472926\pi\)
\(912\) 0.199781 0.00661542
\(913\) 0 0
\(914\) 16.1547 0.534351
\(915\) 0 0
\(916\) −4.36567 −0.144246
\(917\) 25.6976 0.848608
\(918\) 16.3284 0.538917
\(919\) −35.2810 −1.16381 −0.581906 0.813256i \(-0.697693\pi\)
−0.581906 + 0.813256i \(0.697693\pi\)
\(920\) 0 0
\(921\) 2.44589 0.0805949
\(922\) −9.43783 −0.310818
\(923\) −23.5057 −0.773699
\(924\) 0 0
\(925\) 0 0
\(926\) −16.9136 −0.555817
\(927\) 10.8511 0.356397
\(928\) 6.17926 0.202844
\(929\) −59.1427 −1.94041 −0.970204 0.242289i \(-0.922102\pi\)
−0.970204 + 0.242289i \(0.922102\pi\)
\(930\) 0 0
\(931\) 0.601017 0.0196975
\(932\) −2.97000 −0.0972857
\(933\) 9.56439 0.313124
\(934\) 8.33220 0.272638
\(935\) 0 0
\(936\) −22.1458 −0.723857
\(937\) 14.4425 0.471817 0.235909 0.971775i \(-0.424193\pi\)
0.235909 + 0.971775i \(0.424193\pi\)
\(938\) −66.3710 −2.16709
\(939\) −15.2949 −0.499129
\(940\) 0 0
\(941\) 18.6591 0.608269 0.304135 0.952629i \(-0.401633\pi\)
0.304135 + 0.952629i \(0.401633\pi\)
\(942\) 16.5979 0.540790
\(943\) −9.66700 −0.314801
\(944\) 31.0514 1.01064
\(945\) 0 0
\(946\) 0 0
\(947\) 0.991391 0.0322159 0.0161079 0.999870i \(-0.494872\pi\)
0.0161079 + 0.999870i \(0.494872\pi\)
\(948\) 1.29391 0.0420242
\(949\) 3.73695 0.121306
\(950\) 0 0
\(951\) 3.33610 0.108180
\(952\) 39.4930 1.27998
\(953\) −8.26404 −0.267699 −0.133849 0.991002i \(-0.542734\pi\)
−0.133849 + 0.991002i \(0.542734\pi\)
\(954\) 10.8321 0.350703
\(955\) 0 0
\(956\) −1.77646 −0.0574549
\(957\) 0 0
\(958\) −30.0881 −0.972101
\(959\) −34.9353 −1.12812
\(960\) 0 0
\(961\) 14.9463 0.482139
\(962\) 37.7637 1.21755
\(963\) −5.17368 −0.166720
\(964\) −1.62057 −0.0521950
\(965\) 0 0
\(966\) −3.30887 −0.106461
\(967\) 7.36029 0.236691 0.118345 0.992972i \(-0.462241\pi\)
0.118345 + 0.992972i \(0.462241\pi\)
\(968\) 0 0
\(969\) −0.202110 −0.00649271
\(970\) 0 0
\(971\) −4.97733 −0.159730 −0.0798650 0.996806i \(-0.525449\pi\)
−0.0798650 + 0.996806i \(0.525449\pi\)
\(972\) 2.15887 0.0692457
\(973\) 1.88128 0.0603111
\(974\) 46.4056 1.48693
\(975\) 0 0
\(976\) −30.9484 −0.990633
\(977\) −10.3368 −0.330704 −0.165352 0.986235i \(-0.552876\pi\)
−0.165352 + 0.986235i \(0.552876\pi\)
\(978\) −12.4680 −0.398684
\(979\) 0 0
\(980\) 0 0
\(981\) 16.3508 0.522041
\(982\) 23.0407 0.735258
\(983\) 29.0614 0.926913 0.463457 0.886120i \(-0.346609\pi\)
0.463457 + 0.886120i \(0.346609\pi\)
\(984\) 14.0317 0.447315
\(985\) 0 0
\(986\) 33.8038 1.07653
\(987\) 4.67278 0.148736
\(988\) 0.0436651 0.00138917
\(989\) 3.44997 0.109703
\(990\) 0 0
\(991\) 7.70381 0.244719 0.122360 0.992486i \(-0.460954\pi\)
0.122360 + 0.992486i \(0.460954\pi\)
\(992\) 6.20166 0.196903
\(993\) 7.43708 0.236009
\(994\) −41.0788 −1.30294
\(995\) 0 0
\(996\) −0.993283 −0.0314734
\(997\) −2.86418 −0.0907095 −0.0453547 0.998971i \(-0.514442\pi\)
−0.0453547 + 0.998971i \(0.514442\pi\)
\(998\) 7.08945 0.224413
\(999\) −32.1010 −1.01563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.w.1.4 4
5.4 even 2 605.2.a.k.1.1 4
11.2 odd 10 275.2.h.a.26.2 8
11.6 odd 10 275.2.h.a.201.2 8
11.10 odd 2 3025.2.a.bd.1.1 4
15.14 odd 2 5445.2.a.bi.1.4 4
20.19 odd 2 9680.2.a.cm.1.2 4
55.2 even 20 275.2.z.a.224.1 16
55.4 even 10 605.2.g.e.511.1 8
55.9 even 10 605.2.g.k.81.2 8
55.13 even 20 275.2.z.a.224.4 16
55.14 even 10 605.2.g.e.251.1 8
55.17 even 20 275.2.z.a.124.4 16
55.19 odd 10 605.2.g.m.251.2 8
55.24 odd 10 55.2.g.b.26.1 8
55.28 even 20 275.2.z.a.124.1 16
55.29 odd 10 605.2.g.m.511.2 8
55.39 odd 10 55.2.g.b.36.1 yes 8
55.49 even 10 605.2.g.k.366.2 8
55.54 odd 2 605.2.a.j.1.4 4
165.134 even 10 495.2.n.e.136.2 8
165.149 even 10 495.2.n.e.91.2 8
165.164 even 2 5445.2.a.bp.1.1 4
220.39 even 10 880.2.bo.h.641.1 8
220.79 even 10 880.2.bo.h.81.1 8
220.219 even 2 9680.2.a.cn.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.26.1 8 55.24 odd 10
55.2.g.b.36.1 yes 8 55.39 odd 10
275.2.h.a.26.2 8 11.2 odd 10
275.2.h.a.201.2 8 11.6 odd 10
275.2.z.a.124.1 16 55.28 even 20
275.2.z.a.124.4 16 55.17 even 20
275.2.z.a.224.1 16 55.2 even 20
275.2.z.a.224.4 16 55.13 even 20
495.2.n.e.91.2 8 165.149 even 10
495.2.n.e.136.2 8 165.134 even 10
605.2.a.j.1.4 4 55.54 odd 2
605.2.a.k.1.1 4 5.4 even 2
605.2.g.e.251.1 8 55.14 even 10
605.2.g.e.511.1 8 55.4 even 10
605.2.g.k.81.2 8 55.9 even 10
605.2.g.k.366.2 8 55.49 even 10
605.2.g.m.251.2 8 55.19 odd 10
605.2.g.m.511.2 8 55.29 odd 10
880.2.bo.h.81.1 8 220.79 even 10
880.2.bo.h.641.1 8 220.39 even 10
3025.2.a.w.1.4 4 1.1 even 1 trivial
3025.2.a.bd.1.1 4 11.10 odd 2
5445.2.a.bi.1.4 4 15.14 odd 2
5445.2.a.bp.1.1 4 165.164 even 2
9680.2.a.cm.1.2 4 20.19 odd 2
9680.2.a.cn.1.2 4 220.219 even 2