Properties

Label 3025.2.a.w
Level $3025$
Weight $2$
Character orbit 3025.a
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + ( - \beta_{3} - \beta_{2} + 1) q^{3} + (\beta_{2} + \beta_1 - 1) q^{4} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{6} + (\beta_{3} - 2 \beta_{2} - \beta_1) q^{7} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{8}+ \cdots + ( - 3 \beta_{3} - 2 \beta_1 + 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} + q^{6} - 3 q^{7} - 3 q^{8} - 8 q^{12} - q^{13} + 2 q^{14} - 3 q^{16} + q^{17} - 10 q^{18} + 20 q^{19} + 10 q^{21} - 5 q^{23} + 11 q^{24} - 15 q^{26} + 15 q^{27} - 13 q^{28} + 12 q^{29}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 3x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 2\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.09529
0.737640
−0.477260
−1.35567
−2.09529 −1.91300 2.39026 0 4.00829 −3.06719 −0.817703 0.659557 0
1.2 −0.737640 2.81156 −1.45589 0 −2.07392 1.03138 2.54920 4.90488 0
1.3 0.477260 −0.323071 −1.77222 0 −0.154189 2.68522 −1.80033 −2.89563 0
1.4 1.35567 −0.575493 −0.162147 0 −0.780181 −3.64941 −2.93117 −2.66881 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.2.a.w 4
5.b even 2 1 605.2.a.k 4
11.b odd 2 1 3025.2.a.bd 4
11.d odd 10 2 275.2.h.a 8
15.d odd 2 1 5445.2.a.bi 4
20.d odd 2 1 9680.2.a.cm 4
55.d odd 2 1 605.2.a.j 4
55.h odd 10 2 55.2.g.b 8
55.h odd 10 2 605.2.g.m 8
55.j even 10 2 605.2.g.e 8
55.j even 10 2 605.2.g.k 8
55.l even 20 4 275.2.z.a 16
165.d even 2 1 5445.2.a.bp 4
165.r even 10 2 495.2.n.e 8
220.g even 2 1 9680.2.a.cn 4
220.o even 10 2 880.2.bo.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.b 8 55.h odd 10 2
275.2.h.a 8 11.d odd 10 2
275.2.z.a 16 55.l even 20 4
495.2.n.e 8 165.r even 10 2
605.2.a.j 4 55.d odd 2 1
605.2.a.k 4 5.b even 2 1
605.2.g.e 8 55.j even 10 2
605.2.g.k 8 55.j even 10 2
605.2.g.m 8 55.h odd 10 2
880.2.bo.h 8 220.o even 10 2
3025.2.a.w 4 1.a even 1 1 trivial
3025.2.a.bd 4 11.b odd 2 1
5445.2.a.bi 4 15.d odd 2 1
5445.2.a.bp 4 165.d even 2 1
9680.2.a.cm 4 20.d odd 2 1
9680.2.a.cn 4 220.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\):

\( T_{2}^{4} + T_{2}^{3} - 3T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} - 6T_{3}^{2} - 5T_{3} - 1 \) Copy content Toggle raw display
\( T_{19}^{4} - 20T_{19}^{3} + 130T_{19}^{2} - 275T_{19} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} - 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 6 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots + 31 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + \cdots + 139 \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} + \cdots + 19 \) Copy content Toggle raw display
$19$ \( T^{4} - 20 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$23$ \( T^{4} + 5 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots - 451 \) Copy content Toggle raw display
$31$ \( T^{4} + 5 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$37$ \( T^{4} + 7 T^{3} + \cdots - 1151 \) Copy content Toggle raw display
$41$ \( T^{4} - 11 T^{3} + \cdots - 319 \) Copy content Toggle raw display
$43$ \( T^{4} + 19 T^{3} + \cdots + 211 \) Copy content Toggle raw display
$47$ \( T^{4} + 5 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$53$ \( T^{4} - 11 T^{3} + \cdots + 941 \) Copy content Toggle raw display
$59$ \( T^{4} - 9 T^{3} + \cdots - 829 \) Copy content Toggle raw display
$61$ \( T^{4} - 12 T^{3} + \cdots - 169 \) Copy content Toggle raw display
$67$ \( T^{4} - 19 T^{3} + \cdots - 4079 \) Copy content Toggle raw display
$71$ \( T^{4} - 5 T^{3} + \cdots - 131 \) Copy content Toggle raw display
$73$ \( T^{4} + 11 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$79$ \( T^{4} - 34 T^{3} + \cdots - 6779 \) Copy content Toggle raw display
$83$ \( T^{4} - 11 T^{3} + \cdots - 1699 \) Copy content Toggle raw display
$89$ \( T^{4} + 8 T^{3} + \cdots + 1861 \) Copy content Toggle raw display
$97$ \( T^{4} + 32 T^{3} + \cdots - 3011 \) Copy content Toggle raw display
show more
show less