Properties

Label 55.2.g.b
Level 5555
Weight 22
Character orbit 55.g
Analytic conductor 0.4390.439
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,2,Mod(16,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 55=511 55 = 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 55.g (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4391772111170.439177211117
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: 8.0.13140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x7+5x63x5+4x4+3x3+5x2+3x+1 x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ6q2+(β6β5β4+1)q3+(β7+β6+β1)q4+(β7+β4β3+1)q5+(β6+β3β21)q6++(4β7β65β5+6)q99+O(q100) q - \beta_{6} q^{2} + ( - \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 1) q^{3} + ( - \beta_{7} + \beta_{6} + \cdots - \beta_1) q^{4} + (\beta_{7} + \beta_{4} - \beta_{3} + 1) q^{5} + (\beta_{6} + \beta_{3} - \beta_{2} - 1) q^{6}+ \cdots + ( - 4 \beta_{7} - \beta_{6} - 5 \beta_{5} + \cdots - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q25q32q4+2q57q6q7+4q85q9+2q10+3q11+16q122q1316q14+5q15+4q1613q17+15q193q2020q21+20q99+O(q100) 8 q - 2 q^{2} - 5 q^{3} - 2 q^{4} + 2 q^{5} - 7 q^{6} - q^{7} + 4 q^{8} - 5 q^{9} + 2 q^{10} + 3 q^{11} + 16 q^{12} - 2 q^{13} - 16 q^{14} + 5 q^{15} + 4 q^{16} - 13 q^{17} + 15 q^{19} - 3 q^{20} - 20 q^{21}+ \cdots - 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x7+5x63x5+4x4+3x3+5x2+3x+1 x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν7+2ν63ν54ν37ν212ν7)/8 ( -\nu^{7} + 2\nu^{6} - 3\nu^{5} - 4\nu^{3} - 7\nu^{2} - 12\nu - 7 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν77ν5+20ν416ν3+19ν2+6ν+9)/8 ( \nu^{7} - 7\nu^{5} + 20\nu^{4} - 16\nu^{3} + 19\nu^{2} + 6\nu + 9 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν7+4ν69ν5+12ν416ν3+13ν210ν1)/8 ( -\nu^{7} + 4\nu^{6} - 9\nu^{5} + 12\nu^{4} - 16\nu^{3} + 13\nu^{2} - 10\nu - 1 ) / 8 Copy content Toggle raw display
β5\beta_{5}== (3ν7+10ν617ν5+8ν44ν313ν28ν5)/8 ( -3\nu^{7} + 10\nu^{6} - 17\nu^{5} + 8\nu^{4} - 4\nu^{3} - 13\nu^{2} - 8\nu - 5 ) / 8 Copy content Toggle raw display
β6\beta_{6}== (3ν712ν6+23ν520ν4+16ν3+ν2+6ν1)/8 ( 3\nu^{7} - 12\nu^{6} + 23\nu^{5} - 20\nu^{4} + 16\nu^{3} + \nu^{2} + 6\nu - 1 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (5ν7+18ν635ν5+32ν428ν311ν212ν7)/8 ( -5\nu^{7} + 18\nu^{6} - 35\nu^{5} + 32\nu^{4} - 28\nu^{3} - 11\nu^{2} - 12\nu - 7 ) / 8 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+β5+β4β2 \beta_{6} + \beta_{5} + \beta_{4} - \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β7+3β6+2β5+β43β22β1 \beta_{7} + 3\beta_{6} + 2\beta_{5} + \beta_{4} - 3\beta_{2} - 2\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 3β7+4β6+β4β35β24β1 3\beta_{7} + 4\beta_{6} + \beta_{4} - \beta_{3} - 5\beta_{2} - 4\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 4β76β54β36β26β11 4\beta_{7} - 6\beta_{5} - 4\beta_{3} - 6\beta_{2} - 6\beta _1 - 1 Copy content Toggle raw display
ν6\nu^{6}== 16β616β56β46β37β16 -16\beta_{6} - 16\beta_{5} - 6\beta_{4} - 6\beta_{3} - 7\beta _1 - 6 Copy content Toggle raw display
ν7\nu^{7}== 16β751β629β523β4+29β216 -16\beta_{7} - 51\beta_{6} - 29\beta_{5} - 23\beta_{4} + 29\beta_{2} - 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/55Z)×\left(\mathbb{Z}/55\mathbb{Z}\right)^\times.

nn 1212 4646
χ(n)\chi(n) 11 β7\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1
1.69513 + 1.23158i
−0.386111 0.280526i
0.418926 1.28932i
−0.227943 + 0.701538i
1.69513 1.23158i
−0.386111 + 0.280526i
0.418926 + 1.28932i
−0.227943 0.701538i
−0.647481 1.99274i −1.54765 1.12443i −1.93376 + 1.40496i −0.309017 + 0.951057i −1.23863 + 3.81211i 2.48141 1.80285i 0.661536 + 0.480634i 0.203814 + 0.627276i 2.09529
16.2 0.147481 + 0.453901i −0.261370 0.189896i 1.43376 1.04169i −0.309017 + 0.951057i 0.0476470 0.146642i −2.17239 + 1.57833i 1.45650 + 1.05821i −0.894797 2.75390i −0.477260
26.1 −1.09676 0.796845i 0.177837 0.547326i −0.0501062 0.154211i 0.809017 0.587785i −0.631180 + 0.458579i −1.12773 3.47080i −0.905781 + 2.78771i 2.15911 + 1.56869i −1.35567
26.2 0.596764 + 0.433574i −0.868820 + 2.67395i −0.449894 1.38463i 0.809017 0.587785i −1.67784 + 1.21902i 0.318714 + 0.980901i 0.787747 2.42443i −3.96813 2.88301i 0.737640
31.1 −0.647481 + 1.99274i −1.54765 + 1.12443i −1.93376 1.40496i −0.309017 0.951057i −1.23863 3.81211i 2.48141 + 1.80285i 0.661536 0.480634i 0.203814 0.627276i 2.09529
31.2 0.147481 0.453901i −0.261370 + 0.189896i 1.43376 + 1.04169i −0.309017 0.951057i 0.0476470 + 0.146642i −2.17239 1.57833i 1.45650 1.05821i −0.894797 + 2.75390i −0.477260
36.1 −1.09676 + 0.796845i 0.177837 + 0.547326i −0.0501062 + 0.154211i 0.809017 + 0.587785i −0.631180 0.458579i −1.12773 + 3.47080i −0.905781 2.78771i 2.15911 1.56869i −1.35567
36.2 0.596764 0.433574i −0.868820 2.67395i −0.449894 + 1.38463i 0.809017 + 0.587785i −1.67784 1.21902i 0.318714 0.980901i 0.787747 + 2.42443i −3.96813 + 2.88301i 0.737640
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.2.g.b 8
3.b odd 2 1 495.2.n.e 8
4.b odd 2 1 880.2.bo.h 8
5.b even 2 1 275.2.h.a 8
5.c odd 4 2 275.2.z.a 16
11.b odd 2 1 605.2.g.k 8
11.c even 5 1 inner 55.2.g.b 8
11.c even 5 1 605.2.a.j 4
11.c even 5 2 605.2.g.m 8
11.d odd 10 1 605.2.a.k 4
11.d odd 10 2 605.2.g.e 8
11.d odd 10 1 605.2.g.k 8
33.f even 10 1 5445.2.a.bi 4
33.h odd 10 1 495.2.n.e 8
33.h odd 10 1 5445.2.a.bp 4
44.g even 10 1 9680.2.a.cm 4
44.h odd 10 1 880.2.bo.h 8
44.h odd 10 1 9680.2.a.cn 4
55.h odd 10 1 3025.2.a.w 4
55.j even 10 1 275.2.h.a 8
55.j even 10 1 3025.2.a.bd 4
55.k odd 20 2 275.2.z.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.b 8 1.a even 1 1 trivial
55.2.g.b 8 11.c even 5 1 inner
275.2.h.a 8 5.b even 2 1
275.2.h.a 8 55.j even 10 1
275.2.z.a 16 5.c odd 4 2
275.2.z.a 16 55.k odd 20 2
495.2.n.e 8 3.b odd 2 1
495.2.n.e 8 33.h odd 10 1
605.2.a.j 4 11.c even 5 1
605.2.a.k 4 11.d odd 10 1
605.2.g.e 8 11.d odd 10 2
605.2.g.k 8 11.b odd 2 1
605.2.g.k 8 11.d odd 10 1
605.2.g.m 8 11.c even 5 2
880.2.bo.h 8 4.b odd 2 1
880.2.bo.h 8 44.h odd 10 1
3025.2.a.w 4 55.h odd 10 1
3025.2.a.bd 4 55.j even 10 1
5445.2.a.bi 4 33.f even 10 1
5445.2.a.bp 4 33.h odd 10 1
9680.2.a.cm 4 44.g even 10 1
9680.2.a.cn 4 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+2T27+5T26+2T25T242T23+5T222T2+1 T_{2}^{8} + 2T_{2}^{7} + 5T_{2}^{6} + 2T_{2}^{5} - T_{2}^{4} - 2T_{2}^{3} + 5T_{2}^{2} - 2T_{2} + 1 acting on S2new(55,[χ])S_{2}^{\mathrm{new}}(55, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+2T7++1 T^{8} + 2 T^{7} + \cdots + 1 Copy content Toggle raw display
33 T8+5T7++1 T^{8} + 5 T^{7} + \cdots + 1 Copy content Toggle raw display
55 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 T8+T7++961 T^{8} + T^{7} + \cdots + 961 Copy content Toggle raw display
1111 T83T7++14641 T^{8} - 3 T^{7} + \cdots + 14641 Copy content Toggle raw display
1313 T8+2T7++19321 T^{8} + 2 T^{7} + \cdots + 19321 Copy content Toggle raw display
1717 T8+13T7++361 T^{8} + 13 T^{7} + \cdots + 361 Copy content Toggle raw display
1919 T815T7++625 T^{8} - 15 T^{7} + \cdots + 625 Copy content Toggle raw display
2323 (T45T3+4T2+11)2 (T^{4} - 5 T^{3} + 4 T^{2} + \cdots - 11)^{2} Copy content Toggle raw display
2929 T8+9T7++203401 T^{8} + 9 T^{7} + \cdots + 203401 Copy content Toggle raw display
3131 T8+10T7++390625 T^{8} + 10 T^{7} + \cdots + 390625 Copy content Toggle raw display
3737 T824T7++1324801 T^{8} - 24 T^{7} + \cdots + 1324801 Copy content Toggle raw display
4141 T88T7++101761 T^{8} - 8 T^{7} + \cdots + 101761 Copy content Toggle raw display
4343 (T4+19T3++211)2 (T^{4} + 19 T^{3} + \cdots + 211)^{2} Copy content Toggle raw display
4747 T8+23T6++28561 T^{8} + 23 T^{6} + \cdots + 28561 Copy content Toggle raw display
5353 T813T7++885481 T^{8} - 13 T^{7} + \cdots + 885481 Copy content Toggle raw display
5959 T8+27T7++687241 T^{8} + 27 T^{7} + \cdots + 687241 Copy content Toggle raw display
6161 T86T7++28561 T^{8} - 6 T^{7} + \cdots + 28561 Copy content Toggle raw display
6767 (T4+19T3+4079)2 (T^{4} + 19 T^{3} + \cdots - 4079)^{2} Copy content Toggle raw display
7171 T8+20T7++17161 T^{8} + 20 T^{7} + \cdots + 17161 Copy content Toggle raw display
7373 T813T7++121 T^{8} - 13 T^{7} + \cdots + 121 Copy content Toggle raw display
7979 T837T7++45954841 T^{8} - 37 T^{7} + \cdots + 45954841 Copy content Toggle raw display
8383 T827T7++2886601 T^{8} - 27 T^{7} + \cdots + 2886601 Copy content Toggle raw display
8989 (T4+8T3++1861)2 (T^{4} + 8 T^{3} + \cdots + 1861)^{2} Copy content Toggle raw display
9797 T824T7++9066121 T^{8} - 24 T^{7} + \cdots + 9066121 Copy content Toggle raw display
show more
show less