Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [55,2,Mod(16,55)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(55, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("55.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 55.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.13140625.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−0.647481 | − | 1.99274i | −1.54765 | − | 1.12443i | −1.93376 | + | 1.40496i | −0.309017 | + | 0.951057i | −1.23863 | + | 3.81211i | 2.48141 | − | 1.80285i | 0.661536 | + | 0.480634i | 0.203814 | + | 0.627276i | 2.09529 | ||||||||||||||||||||||||||
16.2 | 0.147481 | + | 0.453901i | −0.261370 | − | 0.189896i | 1.43376 | − | 1.04169i | −0.309017 | + | 0.951057i | 0.0476470 | − | 0.146642i | −2.17239 | + | 1.57833i | 1.45650 | + | 1.05821i | −0.894797 | − | 2.75390i | −0.477260 | |||||||||||||||||||||||||||
26.1 | −1.09676 | − | 0.796845i | 0.177837 | − | 0.547326i | −0.0501062 | − | 0.154211i | 0.809017 | − | 0.587785i | −0.631180 | + | 0.458579i | −1.12773 | − | 3.47080i | −0.905781 | + | 2.78771i | 2.15911 | + | 1.56869i | −1.35567 | |||||||||||||||||||||||||||
26.2 | 0.596764 | + | 0.433574i | −0.868820 | + | 2.67395i | −0.449894 | − | 1.38463i | 0.809017 | − | 0.587785i | −1.67784 | + | 1.21902i | 0.318714 | + | 0.980901i | 0.787747 | − | 2.42443i | −3.96813 | − | 2.88301i | 0.737640 | |||||||||||||||||||||||||||
31.1 | −0.647481 | + | 1.99274i | −1.54765 | + | 1.12443i | −1.93376 | − | 1.40496i | −0.309017 | − | 0.951057i | −1.23863 | − | 3.81211i | 2.48141 | + | 1.80285i | 0.661536 | − | 0.480634i | 0.203814 | − | 0.627276i | 2.09529 | |||||||||||||||||||||||||||
31.2 | 0.147481 | − | 0.453901i | −0.261370 | + | 0.189896i | 1.43376 | + | 1.04169i | −0.309017 | − | 0.951057i | 0.0476470 | + | 0.146642i | −2.17239 | − | 1.57833i | 1.45650 | − | 1.05821i | −0.894797 | + | 2.75390i | −0.477260 | |||||||||||||||||||||||||||
36.1 | −1.09676 | + | 0.796845i | 0.177837 | + | 0.547326i | −0.0501062 | + | 0.154211i | 0.809017 | + | 0.587785i | −0.631180 | − | 0.458579i | −1.12773 | + | 3.47080i | −0.905781 | − | 2.78771i | 2.15911 | − | 1.56869i | −1.35567 | |||||||||||||||||||||||||||
36.2 | 0.596764 | − | 0.433574i | −0.868820 | − | 2.67395i | −0.449894 | + | 1.38463i | 0.809017 | + | 0.587785i | −1.67784 | − | 1.21902i | 0.318714 | − | 0.980901i | 0.787747 | + | 2.42443i | −3.96813 | + | 2.88301i | 0.737640 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 55.2.g.b | ✓ | 8 |
3.b | odd | 2 | 1 | 495.2.n.e | 8 | ||
4.b | odd | 2 | 1 | 880.2.bo.h | 8 | ||
5.b | even | 2 | 1 | 275.2.h.a | 8 | ||
5.c | odd | 4 | 2 | 275.2.z.a | 16 | ||
11.b | odd | 2 | 1 | 605.2.g.k | 8 | ||
11.c | even | 5 | 1 | inner | 55.2.g.b | ✓ | 8 |
11.c | even | 5 | 1 | 605.2.a.j | 4 | ||
11.c | even | 5 | 2 | 605.2.g.m | 8 | ||
11.d | odd | 10 | 1 | 605.2.a.k | 4 | ||
11.d | odd | 10 | 2 | 605.2.g.e | 8 | ||
11.d | odd | 10 | 1 | 605.2.g.k | 8 | ||
33.f | even | 10 | 1 | 5445.2.a.bi | 4 | ||
33.h | odd | 10 | 1 | 495.2.n.e | 8 | ||
33.h | odd | 10 | 1 | 5445.2.a.bp | 4 | ||
44.g | even | 10 | 1 | 9680.2.a.cm | 4 | ||
44.h | odd | 10 | 1 | 880.2.bo.h | 8 | ||
44.h | odd | 10 | 1 | 9680.2.a.cn | 4 | ||
55.h | odd | 10 | 1 | 3025.2.a.w | 4 | ||
55.j | even | 10 | 1 | 275.2.h.a | 8 | ||
55.j | even | 10 | 1 | 3025.2.a.bd | 4 | ||
55.k | odd | 20 | 2 | 275.2.z.a | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.2.g.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
55.2.g.b | ✓ | 8 | 11.c | even | 5 | 1 | inner |
275.2.h.a | 8 | 5.b | even | 2 | 1 | ||
275.2.h.a | 8 | 55.j | even | 10 | 1 | ||
275.2.z.a | 16 | 5.c | odd | 4 | 2 | ||
275.2.z.a | 16 | 55.k | odd | 20 | 2 | ||
495.2.n.e | 8 | 3.b | odd | 2 | 1 | ||
495.2.n.e | 8 | 33.h | odd | 10 | 1 | ||
605.2.a.j | 4 | 11.c | even | 5 | 1 | ||
605.2.a.k | 4 | 11.d | odd | 10 | 1 | ||
605.2.g.e | 8 | 11.d | odd | 10 | 2 | ||
605.2.g.k | 8 | 11.b | odd | 2 | 1 | ||
605.2.g.k | 8 | 11.d | odd | 10 | 1 | ||
605.2.g.m | 8 | 11.c | even | 5 | 2 | ||
880.2.bo.h | 8 | 4.b | odd | 2 | 1 | ||
880.2.bo.h | 8 | 44.h | odd | 10 | 1 | ||
3025.2.a.w | 4 | 55.h | odd | 10 | 1 | ||
3025.2.a.bd | 4 | 55.j | even | 10 | 1 | ||
5445.2.a.bi | 4 | 33.f | even | 10 | 1 | ||
5445.2.a.bp | 4 | 33.h | odd | 10 | 1 | ||
9680.2.a.cm | 4 | 44.g | even | 10 | 1 | ||
9680.2.a.cn | 4 | 44.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .