L(s) = 1 | + 5.47·2-s − 3i·3-s + 14·4-s − 16.4i·6-s − 54.7·7-s − 10.9·8-s + 72·9-s + (11 − 120. i)11-s − 42i·12-s − 186.·13-s − 300·14-s − 284·16-s − 230.·17-s + 394.·18-s − 98.5i·19-s + ⋯ |
L(s) = 1 | + 1.36·2-s − 0.333i·3-s + 0.875·4-s − 0.456i·6-s − 1.11·7-s − 0.171·8-s + 0.888·9-s + (0.0909 − 0.995i)11-s − 0.291i·12-s − 1.10·13-s − 1.53·14-s − 1.10·16-s − 0.795·17-s + 1.21·18-s − 0.273i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.931 + 0.364i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.931 + 0.364i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.324229886\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.324229886\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-11 + 120. i)T \) |
good | 2 | \( 1 - 5.47T + 16T^{2} \) |
| 3 | \( 1 + 3iT - 81T^{2} \) |
| 7 | \( 1 + 54.7T + 2.40e3T^{2} \) |
| 13 | \( 1 + 186.T + 2.85e4T^{2} \) |
| 17 | \( 1 + 230.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 98.5iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 277iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 1.27e3iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 1.36e3T + 9.23e5T^{2} \) |
| 37 | \( 1 + 167iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 1.06e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 1.20e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + 1.70e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 4.52e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 2.36e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + 3.96e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 2.80e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 3.39e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 3.31e3T + 2.83e7T^{2} \) |
| 79 | \( 1 + 6.09e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 832.T + 4.74e7T^{2} \) |
| 89 | \( 1 - 4.67e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + 4.24e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18932961471605486940627470584, −9.882205444299047706596340894354, −9.052352114810095724845863587479, −7.46348480824276089771804785491, −6.56719998329854476280908842826, −5.74716638713123096783570202463, −4.49760893072125750686205566207, −3.51058447946788436459781544661, −2.36358324555860989996466946616, −0.23910101244730748511070629134,
2.22168512381166335600852833350, 3.52151218303618039358495849387, 4.43847186159499758629736853713, 5.29284786032966296900098725363, 6.66211944389172203537369667366, 7.19886176353147046283544185682, 9.110889928723443314213087819317, 9.790321096658354997362079947213, 10.78854428997439005400431323286, 12.18303840257515822021785099922