Properties

Label 275.5.d.b
Level 275275
Weight 55
Character orbit 275.d
Analytic conductor 28.42728.427
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,5,Mod(274,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.274");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 275=5211 275 = 5^{2} \cdot 11
Weight: k k == 5 5
Character orbit: [χ][\chi] == 275.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.426739848128.4267398481
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,30)\Q(i, \sqrt{30})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+225 x^{4} + 225 Copy content Toggle raw display
Coefficient ring: Z[a1,,a23]\Z[a_1, \ldots, a_{23}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q23β1q3+14q4+3β2q6+10β3q7+2β3q8+72q9+(22β2+11)q1142β1q12+34β3q13300q14++(1584β2+792)q99+O(q100) q - \beta_{3} q^{2} - 3 \beta_1 q^{3} + 14 q^{4} + 3 \beta_{2} q^{6} + 10 \beta_{3} q^{7} + 2 \beta_{3} q^{8} + 72 q^{9} + (22 \beta_{2} + 11) q^{11} - 42 \beta_1 q^{12} + 34 \beta_{3} q^{13} - 300 q^{14}+ \cdots + (1584 \beta_{2} + 792) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+56q4+288q9+44q111200q141136q164080q265452q315040q34+4032q36+616q44+2396q49+2400q56+9452q5912064q647920q66++3168q99+O(q100) 4 q + 56 q^{4} + 288 q^{9} + 44 q^{11} - 1200 q^{14} - 1136 q^{16} - 4080 q^{26} - 5452 q^{31} - 5040 q^{34} + 4032 q^{36} + 616 q^{44} + 2396 q^{49} + 2400 q^{56} + 9452 q^{59} - 12064 q^{64} - 7920 q^{66}+ \cdots + 3168 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+225 x^{4} + 225 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/15 ( \nu^{2} ) / 15 Copy content Toggle raw display
β2\beta_{2}== (ν3+15ν)/15 ( \nu^{3} + 15\nu ) / 15 Copy content Toggle raw display
β3\beta_{3}== (ν3+15ν)/15 ( -\nu^{3} + 15\nu ) / 15 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 15β1 15\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (15β3+15β2)/2 ( -15\beta_{3} + 15\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/275Z)×\left(\mathbb{Z}/275\mathbb{Z}\right)^\times.

nn 101101 177177
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
274.1
2.73861 + 2.73861i
2.73861 2.73861i
−2.73861 2.73861i
−2.73861 + 2.73861i
−5.47723 3.00000i 14.0000 0 16.4317i 54.7723 10.9545 72.0000 0
274.2 −5.47723 3.00000i 14.0000 0 16.4317i 54.7723 10.9545 72.0000 0
274.3 5.47723 3.00000i 14.0000 0 16.4317i −54.7723 −10.9545 72.0000 0
274.4 5.47723 3.00000i 14.0000 0 16.4317i −54.7723 −10.9545 72.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.5.d.b 4
5.b even 2 1 inner 275.5.d.b 4
5.c odd 4 1 11.5.b.b 2
5.c odd 4 1 275.5.c.e 2
11.b odd 2 1 inner 275.5.d.b 4
15.e even 4 1 99.5.c.b 2
20.e even 4 1 176.5.h.c 2
40.i odd 4 1 704.5.h.f 2
40.k even 4 1 704.5.h.d 2
55.d odd 2 1 inner 275.5.d.b 4
55.e even 4 1 11.5.b.b 2
55.e even 4 1 275.5.c.e 2
55.k odd 20 4 121.5.d.b 8
55.l even 20 4 121.5.d.b 8
165.l odd 4 1 99.5.c.b 2
220.i odd 4 1 176.5.h.c 2
440.t even 4 1 704.5.h.f 2
440.w odd 4 1 704.5.h.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.b 2 5.c odd 4 1
11.5.b.b 2 55.e even 4 1
99.5.c.b 2 15.e even 4 1
99.5.c.b 2 165.l odd 4 1
121.5.d.b 8 55.k odd 20 4
121.5.d.b 8 55.l even 20 4
176.5.h.c 2 20.e even 4 1
176.5.h.c 2 220.i odd 4 1
275.5.c.e 2 5.c odd 4 1
275.5.c.e 2 55.e even 4 1
275.5.d.b 4 1.a even 1 1 trivial
275.5.d.b 4 5.b even 2 1 inner
275.5.d.b 4 11.b odd 2 1 inner
275.5.d.b 4 55.d odd 2 1 inner
704.5.h.d 2 40.k even 4 1
704.5.h.d 2 440.w odd 4 1
704.5.h.f 2 40.i odd 4 1
704.5.h.f 2 440.t even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2230 T_{2}^{2} - 30 acting on S5new(275,[χ])S_{5}^{\mathrm{new}}(275, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T230)2 (T^{2} - 30)^{2} Copy content Toggle raw display
33 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T23000)2 (T^{2} - 3000)^{2} Copy content Toggle raw display
1111 (T222T+14641)2 (T^{2} - 22 T + 14641)^{2} Copy content Toggle raw display
1313 (T234680)2 (T^{2} - 34680)^{2} Copy content Toggle raw display
1717 (T252920)2 (T^{2} - 52920)^{2} Copy content Toggle raw display
1919 (T2+9720)2 (T^{2} + 9720)^{2} Copy content Toggle raw display
2323 (T2+76729)2 (T^{2} + 76729)^{2} Copy content Toggle raw display
2929 (T2+1614720)2 (T^{2} + 1614720)^{2} Copy content Toggle raw display
3131 (T+1363)4 (T + 1363)^{4} Copy content Toggle raw display
3737 (T2+27889)2 (T^{2} + 27889)^{2} Copy content Toggle raw display
4141 (T2+1129080)2 (T^{2} + 1129080)^{2} Copy content Toggle raw display
4343 (T21452000)2 (T^{2} - 1452000)^{2} Copy content Toggle raw display
4747 (T2+2896804)2 (T^{2} + 2896804)^{2} Copy content Toggle raw display
5353 (T2+20448484)2 (T^{2} + 20448484)^{2} Copy content Toggle raw display
5959 (T2363)4 (T - 2363)^{4} Copy content Toggle raw display
6161 (T2+15725280)2 (T^{2} + 15725280)^{2} Copy content Toggle raw display
6767 (T2+7856809)2 (T^{2} + 7856809)^{2} Copy content Toggle raw display
7171 (T3397)4 (T - 3397)^{4} Copy content Toggle raw display
7373 (T211017080)2 (T^{2} - 11017080)^{2} Copy content Toggle raw display
7979 (T2+37096320)2 (T^{2} + 37096320)^{2} Copy content Toggle raw display
8383 (T2693120)2 (T^{2} - 693120)^{2} Copy content Toggle raw display
8989 (T4673)4 (T - 4673)^{4} Copy content Toggle raw display
9797 (T2+18037009)2 (T^{2} + 18037009)^{2} Copy content Toggle raw display
show more
show less