Properties

Label 275.5.d.b
Level $275$
Weight $5$
Character orbit 275.d
Analytic conductor $28.427$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,5,Mod(274,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.274");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.4267398481\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{30})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} - 3 \beta_1 q^{3} + 14 q^{4} + 3 \beta_{2} q^{6} + 10 \beta_{3} q^{7} + 2 \beta_{3} q^{8} + 72 q^{9} + (22 \beta_{2} + 11) q^{11} - 42 \beta_1 q^{12} + 34 \beta_{3} q^{13} - 300 q^{14}+ \cdots + (1584 \beta_{2} + 792) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 56 q^{4} + 288 q^{9} + 44 q^{11} - 1200 q^{14} - 1136 q^{16} - 4080 q^{26} - 5452 q^{31} - 5040 q^{34} + 4032 q^{36} + 616 q^{44} + 2396 q^{49} + 2400 q^{56} + 9452 q^{59} - 12064 q^{64} - 7920 q^{66}+ \cdots + 3168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 225 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 15\nu ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 15\nu ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 15\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -15\beta_{3} + 15\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
2.73861 + 2.73861i
2.73861 2.73861i
−2.73861 2.73861i
−2.73861 + 2.73861i
−5.47723 3.00000i 14.0000 0 16.4317i 54.7723 10.9545 72.0000 0
274.2 −5.47723 3.00000i 14.0000 0 16.4317i 54.7723 10.9545 72.0000 0
274.3 5.47723 3.00000i 14.0000 0 16.4317i −54.7723 −10.9545 72.0000 0
274.4 5.47723 3.00000i 14.0000 0 16.4317i −54.7723 −10.9545 72.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.5.d.b 4
5.b even 2 1 inner 275.5.d.b 4
5.c odd 4 1 11.5.b.b 2
5.c odd 4 1 275.5.c.e 2
11.b odd 2 1 inner 275.5.d.b 4
15.e even 4 1 99.5.c.b 2
20.e even 4 1 176.5.h.c 2
40.i odd 4 1 704.5.h.f 2
40.k even 4 1 704.5.h.d 2
55.d odd 2 1 inner 275.5.d.b 4
55.e even 4 1 11.5.b.b 2
55.e even 4 1 275.5.c.e 2
55.k odd 20 4 121.5.d.b 8
55.l even 20 4 121.5.d.b 8
165.l odd 4 1 99.5.c.b 2
220.i odd 4 1 176.5.h.c 2
440.t even 4 1 704.5.h.f 2
440.w odd 4 1 704.5.h.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.b 2 5.c odd 4 1
11.5.b.b 2 55.e even 4 1
99.5.c.b 2 15.e even 4 1
99.5.c.b 2 165.l odd 4 1
121.5.d.b 8 55.k odd 20 4
121.5.d.b 8 55.l even 20 4
176.5.h.c 2 20.e even 4 1
176.5.h.c 2 220.i odd 4 1
275.5.c.e 2 5.c odd 4 1
275.5.c.e 2 55.e even 4 1
275.5.d.b 4 1.a even 1 1 trivial
275.5.d.b 4 5.b even 2 1 inner
275.5.d.b 4 11.b odd 2 1 inner
275.5.d.b 4 55.d odd 2 1 inner
704.5.h.d 2 40.k even 4 1
704.5.h.d 2 440.w odd 4 1
704.5.h.f 2 40.i odd 4 1
704.5.h.f 2 440.t even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 30 \) acting on \(S_{5}^{\mathrm{new}}(275, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 30)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 3000)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 22 T + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 34680)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 52920)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 9720)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 76729)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1614720)^{2} \) Copy content Toggle raw display
$31$ \( (T + 1363)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 27889)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 1129080)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 1452000)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 2896804)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 20448484)^{2} \) Copy content Toggle raw display
$59$ \( (T - 2363)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 15725280)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 7856809)^{2} \) Copy content Toggle raw display
$71$ \( (T - 3397)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 11017080)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 37096320)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 693120)^{2} \) Copy content Toggle raw display
$89$ \( (T - 4673)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 18037009)^{2} \) Copy content Toggle raw display
show more
show less