Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [704,5,Mod(65,704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("704.65");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 704.h (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 11) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | 3.00000 | 0 | −31.0000 | 0 | − | 54.7723i | 0 | −72.0000 | 0 | |||||||||||||||||||||||
65.2 | 0 | 3.00000 | 0 | −31.0000 | 0 | 54.7723i | 0 | −72.0000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 704.5.h.f | 2 | |
4.b | odd | 2 | 1 | 704.5.h.d | 2 | ||
8.b | even | 2 | 1 | 11.5.b.b | ✓ | 2 | |
8.d | odd | 2 | 1 | 176.5.h.c | 2 | ||
11.b | odd | 2 | 1 | inner | 704.5.h.f | 2 | |
24.h | odd | 2 | 1 | 99.5.c.b | 2 | ||
40.f | even | 2 | 1 | 275.5.c.e | 2 | ||
40.i | odd | 4 | 2 | 275.5.d.b | 4 | ||
44.c | even | 2 | 1 | 704.5.h.d | 2 | ||
88.b | odd | 2 | 1 | 11.5.b.b | ✓ | 2 | |
88.g | even | 2 | 1 | 176.5.h.c | 2 | ||
88.o | even | 10 | 4 | 121.5.d.b | 8 | ||
88.p | odd | 10 | 4 | 121.5.d.b | 8 | ||
264.m | even | 2 | 1 | 99.5.c.b | 2 | ||
440.o | odd | 2 | 1 | 275.5.c.e | 2 | ||
440.t | even | 4 | 2 | 275.5.d.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
11.5.b.b | ✓ | 2 | 8.b | even | 2 | 1 | |
11.5.b.b | ✓ | 2 | 88.b | odd | 2 | 1 | |
99.5.c.b | 2 | 24.h | odd | 2 | 1 | ||
99.5.c.b | 2 | 264.m | even | 2 | 1 | ||
121.5.d.b | 8 | 88.o | even | 10 | 4 | ||
121.5.d.b | 8 | 88.p | odd | 10 | 4 | ||
176.5.h.c | 2 | 8.d | odd | 2 | 1 | ||
176.5.h.c | 2 | 88.g | even | 2 | 1 | ||
275.5.c.e | 2 | 40.f | even | 2 | 1 | ||
275.5.c.e | 2 | 440.o | odd | 2 | 1 | ||
275.5.d.b | 4 | 40.i | odd | 4 | 2 | ||
275.5.d.b | 4 | 440.t | even | 4 | 2 | ||
704.5.h.d | 2 | 4.b | odd | 2 | 1 | ||
704.5.h.d | 2 | 44.c | even | 2 | 1 | ||
704.5.h.f | 2 | 1.a | even | 1 | 1 | trivial | |
704.5.h.f | 2 | 11.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|