Properties

Label 704.5.h.f
Level $704$
Weight $5$
Character orbit 704.h
Analytic conductor $72.772$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,5,Mod(65,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.65");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 704.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.7724540110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-30}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-30}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} - 31 q^{5} + 5 \beta q^{7} - 72 q^{9} + ( - 11 \beta - 11) q^{11} + 17 \beta q^{13} - 93 q^{15} + 21 \beta q^{17} + 9 \beta q^{19} + 15 \beta q^{21} + 277 q^{23} + 336 q^{25} - 459 q^{27} + 116 \beta q^{29}+ \cdots + (792 \beta + 792) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 62 q^{5} - 144 q^{9} - 22 q^{11} - 186 q^{15} + 554 q^{23} + 672 q^{25} - 918 q^{27} - 2726 q^{31} - 66 q^{33} - 334 q^{37} + 4464 q^{45} + 3404 q^{47} - 1198 q^{49} - 9044 q^{53} + 682 q^{55}+ \cdots + 1584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
5.47723i
5.47723i
0 3.00000 0 −31.0000 0 54.7723i 0 −72.0000 0
65.2 0 3.00000 0 −31.0000 0 54.7723i 0 −72.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.5.h.f 2
4.b odd 2 1 704.5.h.d 2
8.b even 2 1 11.5.b.b 2
8.d odd 2 1 176.5.h.c 2
11.b odd 2 1 inner 704.5.h.f 2
24.h odd 2 1 99.5.c.b 2
40.f even 2 1 275.5.c.e 2
40.i odd 4 2 275.5.d.b 4
44.c even 2 1 704.5.h.d 2
88.b odd 2 1 11.5.b.b 2
88.g even 2 1 176.5.h.c 2
88.o even 10 4 121.5.d.b 8
88.p odd 10 4 121.5.d.b 8
264.m even 2 1 99.5.c.b 2
440.o odd 2 1 275.5.c.e 2
440.t even 4 2 275.5.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.b 2 8.b even 2 1
11.5.b.b 2 88.b odd 2 1
99.5.c.b 2 24.h odd 2 1
99.5.c.b 2 264.m even 2 1
121.5.d.b 8 88.o even 10 4
121.5.d.b 8 88.p odd 10 4
176.5.h.c 2 8.d odd 2 1
176.5.h.c 2 88.g even 2 1
275.5.c.e 2 40.f even 2 1
275.5.c.e 2 440.o odd 2 1
275.5.d.b 4 40.i odd 4 2
275.5.d.b 4 440.t even 4 2
704.5.h.d 2 4.b odd 2 1
704.5.h.d 2 44.c even 2 1
704.5.h.f 2 1.a even 1 1 trivial
704.5.h.f 2 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(704, [\chi])\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} + 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 31)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3000 \) Copy content Toggle raw display
$11$ \( T^{2} + 22T + 14641 \) Copy content Toggle raw display
$13$ \( T^{2} + 34680 \) Copy content Toggle raw display
$17$ \( T^{2} + 52920 \) Copy content Toggle raw display
$19$ \( T^{2} + 9720 \) Copy content Toggle raw display
$23$ \( (T - 277)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 1614720 \) Copy content Toggle raw display
$31$ \( (T + 1363)^{2} \) Copy content Toggle raw display
$37$ \( (T + 167)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 1129080 \) Copy content Toggle raw display
$43$ \( T^{2} + 1452000 \) Copy content Toggle raw display
$47$ \( (T - 1702)^{2} \) Copy content Toggle raw display
$53$ \( (T + 4522)^{2} \) Copy content Toggle raw display
$59$ \( (T - 2363)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 15725280 \) Copy content Toggle raw display
$67$ \( (T - 2803)^{2} \) Copy content Toggle raw display
$71$ \( (T - 3397)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 11017080 \) Copy content Toggle raw display
$79$ \( T^{2} + 37096320 \) Copy content Toggle raw display
$83$ \( T^{2} + 693120 \) Copy content Toggle raw display
$89$ \( (T + 4673)^{2} \) Copy content Toggle raw display
$97$ \( (T - 4247)^{2} \) Copy content Toggle raw display
show more
show less