Properties

Label 704.5.h.f
Level 704704
Weight 55
Character orbit 704.h
Analytic conductor 72.77272.772
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,5,Mod(65,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.65");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 5 5
Character orbit: [χ][\chi] == 704.h (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 72.772454011072.7724540110
Analytic rank: 00
Dimension: 22
Coefficient field: Q(30)\Q(\sqrt{-30})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+30 x^{2} + 30 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=230\beta = 2\sqrt{-30}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q331q5+5βq772q9+(11β11)q11+17βq1393q15+21βq17+9βq19+15βq21+277q23+336q25459q27+116βq29++(792β+792)q99+O(q100) q + 3 q^{3} - 31 q^{5} + 5 \beta q^{7} - 72 q^{9} + ( - 11 \beta - 11) q^{11} + 17 \beta q^{13} - 93 q^{15} + 21 \beta q^{17} + 9 \beta q^{19} + 15 \beta q^{21} + 277 q^{23} + 336 q^{25} - 459 q^{27} + 116 \beta q^{29}+ \cdots + (792 \beta + 792) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q362q5144q922q11186q15+554q23+672q25918q272726q3166q33334q37+4464q45+3404q471198q499044q53+682q55++1584q99+O(q100) 2 q + 6 q^{3} - 62 q^{5} - 144 q^{9} - 22 q^{11} - 186 q^{15} + 554 q^{23} + 672 q^{25} - 918 q^{27} - 2726 q^{31} - 66 q^{33} - 334 q^{37} + 4464 q^{45} + 3404 q^{47} - 1198 q^{49} - 9044 q^{53} + 682 q^{55}+ \cdots + 1584 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/704Z)×\left(\mathbb{Z}/704\mathbb{Z}\right)^\times.

nn 133133 321321 639639
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
5.47723i
5.47723i
0 3.00000 0 −31.0000 0 54.7723i 0 −72.0000 0
65.2 0 3.00000 0 −31.0000 0 54.7723i 0 −72.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.5.h.f 2
4.b odd 2 1 704.5.h.d 2
8.b even 2 1 11.5.b.b 2
8.d odd 2 1 176.5.h.c 2
11.b odd 2 1 inner 704.5.h.f 2
24.h odd 2 1 99.5.c.b 2
40.f even 2 1 275.5.c.e 2
40.i odd 4 2 275.5.d.b 4
44.c even 2 1 704.5.h.d 2
88.b odd 2 1 11.5.b.b 2
88.g even 2 1 176.5.h.c 2
88.o even 10 4 121.5.d.b 8
88.p odd 10 4 121.5.d.b 8
264.m even 2 1 99.5.c.b 2
440.o odd 2 1 275.5.c.e 2
440.t even 4 2 275.5.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.b 2 8.b even 2 1
11.5.b.b 2 88.b odd 2 1
99.5.c.b 2 24.h odd 2 1
99.5.c.b 2 264.m even 2 1
121.5.d.b 8 88.o even 10 4
121.5.d.b 8 88.p odd 10 4
176.5.h.c 2 8.d odd 2 1
176.5.h.c 2 88.g even 2 1
275.5.c.e 2 40.f even 2 1
275.5.c.e 2 440.o odd 2 1
275.5.d.b 4 40.i odd 4 2
275.5.d.b 4 440.t even 4 2
704.5.h.d 2 4.b odd 2 1
704.5.h.d 2 44.c even 2 1
704.5.h.f 2 1.a even 1 1 trivial
704.5.h.f 2 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S5new(704,[χ])S_{5}^{\mathrm{new}}(704, [\chi]):

T33 T_{3} - 3 Copy content Toggle raw display
T5+31 T_{5} + 31 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 (T+31)2 (T + 31)^{2} Copy content Toggle raw display
77 T2+3000 T^{2} + 3000 Copy content Toggle raw display
1111 T2+22T+14641 T^{2} + 22T + 14641 Copy content Toggle raw display
1313 T2+34680 T^{2} + 34680 Copy content Toggle raw display
1717 T2+52920 T^{2} + 52920 Copy content Toggle raw display
1919 T2+9720 T^{2} + 9720 Copy content Toggle raw display
2323 (T277)2 (T - 277)^{2} Copy content Toggle raw display
2929 T2+1614720 T^{2} + 1614720 Copy content Toggle raw display
3131 (T+1363)2 (T + 1363)^{2} Copy content Toggle raw display
3737 (T+167)2 (T + 167)^{2} Copy content Toggle raw display
4141 T2+1129080 T^{2} + 1129080 Copy content Toggle raw display
4343 T2+1452000 T^{2} + 1452000 Copy content Toggle raw display
4747 (T1702)2 (T - 1702)^{2} Copy content Toggle raw display
5353 (T+4522)2 (T + 4522)^{2} Copy content Toggle raw display
5959 (T2363)2 (T - 2363)^{2} Copy content Toggle raw display
6161 T2+15725280 T^{2} + 15725280 Copy content Toggle raw display
6767 (T2803)2 (T - 2803)^{2} Copy content Toggle raw display
7171 (T3397)2 (T - 3397)^{2} Copy content Toggle raw display
7373 T2+11017080 T^{2} + 11017080 Copy content Toggle raw display
7979 T2+37096320 T^{2} + 37096320 Copy content Toggle raw display
8383 T2+693120 T^{2} + 693120 Copy content Toggle raw display
8989 (T+4673)2 (T + 4673)^{2} Copy content Toggle raw display
9797 (T4247)2 (T - 4247)^{2} Copy content Toggle raw display
show more
show less