L(s) = 1 | + 14·3-s − 294·5-s − 686·7-s − 3.21e3·9-s − 3.49e3·11-s − 1.61e4·13-s − 4.11e3·15-s − 2.92e4·17-s − 3.20e3·19-s − 9.60e3·21-s − 9.36e3·23-s + 3.06e4·25-s − 6.22e4·27-s + 1.84e5·29-s + 1.65e5·31-s − 4.88e4·33-s + 2.01e5·35-s + 2.86e5·37-s − 2.26e5·39-s − 1.16e5·41-s − 2.94e5·43-s + 9.46e5·45-s − 1.01e6·47-s + 3.52e5·49-s − 4.09e5·51-s − 1.39e6·53-s + 1.02e6·55-s + ⋯ |
L(s) = 1 | + 0.299·3-s − 1.05·5-s − 0.755·7-s − 1.47·9-s − 0.791·11-s − 2.04·13-s − 0.314·15-s − 1.44·17-s − 0.107·19-s − 0.226·21-s − 0.160·23-s + 0.392·25-s − 0.608·27-s + 1.40·29-s + 0.995·31-s − 0.236·33-s + 0.795·35-s + 0.928·37-s − 0.611·39-s − 0.264·41-s − 0.564·43-s + 1.54·45-s − 1.42·47-s + 3/7·49-s − 0.432·51-s − 1.28·53-s + 0.832·55-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(784s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
784
= 24⋅72
|
Sign: |
1
|
Analytic conductor: |
76.5061 |
Root analytic conductor: |
2.95749 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 784, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1+p3T)2 |
good | 3 | D4 | 1−14T+1138pT2−14p7T3+p14T4 |
| 5 | D4 | 1+294T+11154pT2+294p7T3+p14T4 |
| 11 | D4 | 1+3492T+8600742T2+3492p7T3+p14T4 |
| 13 | D4 | 1+16170T+150099650T2+16170p7T3+p14T4 |
| 17 | D4 | 1+29232T+887067486T2+29232p7T3+p14T4 |
| 19 | D4 | 1+3206T+330079206T2+3206p7T3+p14T4 |
| 23 | D4 | 1+9360T+5917092558T2+9360p7T3+p14T4 |
| 29 | D4 | 1−184704T+39838908966T2−184704p7T3+p14T4 |
| 31 | D4 | 1−165060T+48364547678T2−165060p7T3+p14T4 |
| 37 | D4 | 1−286144T+144034750326T2−286144p7T3+p14T4 |
| 41 | D4 | 1+116760T+300275715646T2+116760p7T3+p14T4 |
| 43 | D4 | 1+294428T+533824957446T2+294428p7T3+p14T4 |
| 47 | D4 | 1+1014132T+1229625493438T2+1014132p7T3+p14T4 |
| 53 | D4 | 1+1396452T+2574488431294T2+1396452p7T3+p14T4 |
| 59 | D4 | 1+2729286T+6810337729638T2+2729286p7T3+p14T4 |
| 61 | D4 | 1−2466954T+6172226893562T2−2466954p7T3+p14T4 |
| 67 | D4 | 1−225176T+3298823282406T2−225176p7T3+p14T4 |
| 71 | D4 | 1−1530312T+12745388415342T2−1530312p7T3+p14T4 |
| 73 | D4 | 1−1143548T+2698400643174T2−1143548p7T3+p14T4 |
| 79 | D4 | 1−7951176T+50346024049886T2−7951176p7T3+p14T4 |
| 83 | D4 | 1+18487854T+138806969812134T2+18487854p7T3+p14T4 |
| 89 | D4 | 1+4652508T+76401824909398T2+4652508p7T3+p14T4 |
| 97 | D4 | 1+26702368T+336379902255582T2+26702368p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.11105203095668464002805776665, −15.05569900760741093739859203013, −14.06701542246417433814737309472, −13.62361943165911306943334020314, −12.62511458099424490990923546578, −12.29229899146141975387039684831, −11.47065165084101464662263004385, −11.02766854584370790829776601718, −9.968615970845589997386328613737, −9.478803074990492011641460549072, −8.282814878331397264335691782473, −8.193348197772232574703031973277, −7.08165516485800333005193773450, −6.36462744902072532906910942325, −5.13008884510804739598291877116, −4.38166338862504466256642613888, −2.95722235374892833709467497848, −2.57095458641617698954174958071, 0, 0,
2.57095458641617698954174958071, 2.95722235374892833709467497848, 4.38166338862504466256642613888, 5.13008884510804739598291877116, 6.36462744902072532906910942325, 7.08165516485800333005193773450, 8.193348197772232574703031973277, 8.282814878331397264335691782473, 9.478803074990492011641460549072, 9.968615970845589997386328613737, 11.02766854584370790829776601718, 11.47065165084101464662263004385, 12.29229899146141975387039684831, 12.62511458099424490990923546578, 13.62361943165911306943334020314, 14.06701542246417433814737309472, 15.05569900760741093739859203013, 15.11105203095668464002805776665