Properties

Label 28.8.a.b.1.2
Level $28$
Weight $8$
Character 28.1
Self dual yes
Analytic conductor $8.747$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,8,Mod(1,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.74678071356\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1009}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-15.3824\) of defining polynomial
Character \(\chi\) \(=\) 28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+38.7648 q^{3} -496.412 q^{5} -343.000 q^{7} -684.293 q^{9} +4035.19 q^{11} -14469.7 q^{13} -19243.3 q^{15} -26750.1 q^{17} +36610.0 q^{19} -13296.3 q^{21} -34920.1 q^{23} +168300. q^{25} -111305. q^{27} +35874.3 q^{29} +198598. q^{31} +156423. q^{33} +170269. q^{35} -114413. q^{37} -560915. q^{39} +245990. q^{41} +30224.0 q^{43} +339692. q^{45} -305233. q^{47} +117649. q^{49} -1.03696e6 q^{51} -1.21053e6 q^{53} -2.00312e6 q^{55} +1.41918e6 q^{57} -1.53557e6 q^{59} -45086.4 q^{61} +234713. q^{63} +7.18295e6 q^{65} +3.08501e6 q^{67} -1.35367e6 q^{69} -1.69051e6 q^{71} -3.86932e6 q^{73} +6.52412e6 q^{75} -1.38407e6 q^{77} +2.00910e6 q^{79} -2.81816e6 q^{81} -8.28720e6 q^{83} +1.32791e7 q^{85} +1.39066e6 q^{87} -6.50624e6 q^{89} +4.96311e6 q^{91} +7.69862e6 q^{93} -1.81737e7 q^{95} -1.14882e7 q^{97} -2.76125e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{3} - 294 q^{5} - 686 q^{7} - 2258 q^{9} - 3492 q^{11} - 16170 q^{13} - 24256 q^{15} - 29232 q^{17} - 3206 q^{19} - 4802 q^{21} - 9360 q^{23} + 131146 q^{25} - 18172 q^{27} + 184704 q^{29} + 165060 q^{31}+ \cdots + 9084332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 38.7648 0.828920 0.414460 0.910067i \(-0.363970\pi\)
0.414460 + 0.910067i \(0.363970\pi\)
\(4\) 0 0
\(5\) −496.412 −1.77602 −0.888009 0.459825i \(-0.847912\pi\)
−0.888009 + 0.459825i \(0.847912\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 0 0
\(9\) −684.293 −0.312891
\(10\) 0 0
\(11\) 4035.19 0.914091 0.457045 0.889443i \(-0.348908\pi\)
0.457045 + 0.889443i \(0.348908\pi\)
\(12\) 0 0
\(13\) −14469.7 −1.82666 −0.913331 0.407217i \(-0.866499\pi\)
−0.913331 + 0.407217i \(0.866499\pi\)
\(14\) 0 0
\(15\) −19243.3 −1.47218
\(16\) 0 0
\(17\) −26750.1 −1.32055 −0.660275 0.751024i \(-0.729560\pi\)
−0.660275 + 0.751024i \(0.729560\pi\)
\(18\) 0 0
\(19\) 36610.0 1.22451 0.612255 0.790661i \(-0.290263\pi\)
0.612255 + 0.790661i \(0.290263\pi\)
\(20\) 0 0
\(21\) −13296.3 −0.313302
\(22\) 0 0
\(23\) −34920.1 −0.598449 −0.299225 0.954183i \(-0.596728\pi\)
−0.299225 + 0.954183i \(0.596728\pi\)
\(24\) 0 0
\(25\) 168300. 2.15424
\(26\) 0 0
\(27\) −111305. −1.08828
\(28\) 0 0
\(29\) 35874.3 0.273143 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(30\) 0 0
\(31\) 198598. 1.19732 0.598660 0.801004i \(-0.295700\pi\)
0.598660 + 0.801004i \(0.295700\pi\)
\(32\) 0 0
\(33\) 156423. 0.757708
\(34\) 0 0
\(35\) 170269. 0.671272
\(36\) 0 0
\(37\) −114413. −0.371338 −0.185669 0.982612i \(-0.559445\pi\)
−0.185669 + 0.982612i \(0.559445\pi\)
\(38\) 0 0
\(39\) −560915. −1.51416
\(40\) 0 0
\(41\) 245990. 0.557409 0.278704 0.960377i \(-0.410095\pi\)
0.278704 + 0.960377i \(0.410095\pi\)
\(42\) 0 0
\(43\) 30224.0 0.0579711 0.0289856 0.999580i \(-0.490772\pi\)
0.0289856 + 0.999580i \(0.490772\pi\)
\(44\) 0 0
\(45\) 339692. 0.555701
\(46\) 0 0
\(47\) −305233. −0.428833 −0.214417 0.976742i \(-0.568785\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −1.03696e6 −1.09463
\(52\) 0 0
\(53\) −1.21053e6 −1.11689 −0.558444 0.829542i \(-0.688601\pi\)
−0.558444 + 0.829542i \(0.688601\pi\)
\(54\) 0 0
\(55\) −2.00312e6 −1.62344
\(56\) 0 0
\(57\) 1.41918e6 1.01502
\(58\) 0 0
\(59\) −1.53557e6 −0.973391 −0.486696 0.873572i \(-0.661798\pi\)
−0.486696 + 0.873572i \(0.661798\pi\)
\(60\) 0 0
\(61\) −45086.4 −0.0254326 −0.0127163 0.999919i \(-0.504048\pi\)
−0.0127163 + 0.999919i \(0.504048\pi\)
\(62\) 0 0
\(63\) 234713. 0.118262
\(64\) 0 0
\(65\) 7.18295e6 3.24419
\(66\) 0 0
\(67\) 3.08501e6 1.25312 0.626562 0.779371i \(-0.284461\pi\)
0.626562 + 0.779371i \(0.284461\pi\)
\(68\) 0 0
\(69\) −1.35367e6 −0.496067
\(70\) 0 0
\(71\) −1.69051e6 −0.560550 −0.280275 0.959920i \(-0.590426\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(72\) 0 0
\(73\) −3.86932e6 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(74\) 0 0
\(75\) 6.52412e6 1.78570
\(76\) 0 0
\(77\) −1.38407e6 −0.345494
\(78\) 0 0
\(79\) 2.00910e6 0.458464 0.229232 0.973372i \(-0.426378\pi\)
0.229232 + 0.973372i \(0.426378\pi\)
\(80\) 0 0
\(81\) −2.81816e6 −0.589208
\(82\) 0 0
\(83\) −8.28720e6 −1.59087 −0.795435 0.606039i \(-0.792758\pi\)
−0.795435 + 0.606039i \(0.792758\pi\)
\(84\) 0 0
\(85\) 1.32791e7 2.34532
\(86\) 0 0
\(87\) 1.39066e6 0.226414
\(88\) 0 0
\(89\) −6.50624e6 −0.978285 −0.489142 0.872204i \(-0.662690\pi\)
−0.489142 + 0.872204i \(0.662690\pi\)
\(90\) 0 0
\(91\) 4.96311e6 0.690414
\(92\) 0 0
\(93\) 7.69862e6 0.992482
\(94\) 0 0
\(95\) −1.81737e7 −2.17475
\(96\) 0 0
\(97\) −1.14882e7 −1.27806 −0.639028 0.769183i \(-0.720663\pi\)
−0.639028 + 0.769183i \(0.720663\pi\)
\(98\) 0 0
\(99\) −2.76125e6 −0.286011
\(100\) 0 0
\(101\) −6.90453e6 −0.666821 −0.333410 0.942782i \(-0.608199\pi\)
−0.333410 + 0.942782i \(0.608199\pi\)
\(102\) 0 0
\(103\) 4.17396e6 0.376372 0.188186 0.982133i \(-0.439739\pi\)
0.188186 + 0.982133i \(0.439739\pi\)
\(104\) 0 0
\(105\) 6.60045e6 0.556431
\(106\) 0 0
\(107\) −6.65685e6 −0.525322 −0.262661 0.964888i \(-0.584600\pi\)
−0.262661 + 0.964888i \(0.584600\pi\)
\(108\) 0 0
\(109\) −1.11394e7 −0.823893 −0.411946 0.911208i \(-0.635151\pi\)
−0.411946 + 0.911208i \(0.635151\pi\)
\(110\) 0 0
\(111\) −4.43520e6 −0.307810
\(112\) 0 0
\(113\) 4.18354e6 0.272753 0.136377 0.990657i \(-0.456454\pi\)
0.136377 + 0.990657i \(0.456454\pi\)
\(114\) 0 0
\(115\) 1.73347e7 1.06286
\(116\) 0 0
\(117\) 9.90153e6 0.571547
\(118\) 0 0
\(119\) 9.17530e6 0.499121
\(120\) 0 0
\(121\) −3.20444e6 −0.164439
\(122\) 0 0
\(123\) 9.53574e6 0.462047
\(124\) 0 0
\(125\) −4.47641e7 −2.04996
\(126\) 0 0
\(127\) 3.65300e7 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(128\) 0 0
\(129\) 1.17162e6 0.0480534
\(130\) 0 0
\(131\) 5.08168e7 1.97496 0.987479 0.157748i \(-0.0504234\pi\)
0.987479 + 0.157748i \(0.0504234\pi\)
\(132\) 0 0
\(133\) −1.25572e7 −0.462821
\(134\) 0 0
\(135\) 5.52532e7 1.93281
\(136\) 0 0
\(137\) 3.03952e7 1.00991 0.504955 0.863146i \(-0.331509\pi\)
0.504955 + 0.863146i \(0.331509\pi\)
\(138\) 0 0
\(139\) −2.92052e7 −0.922377 −0.461189 0.887302i \(-0.652577\pi\)
−0.461189 + 0.887302i \(0.652577\pi\)
\(140\) 0 0
\(141\) −1.18323e7 −0.355469
\(142\) 0 0
\(143\) −5.83880e7 −1.66973
\(144\) 0 0
\(145\) −1.78084e7 −0.485107
\(146\) 0 0
\(147\) 4.56064e6 0.118417
\(148\) 0 0
\(149\) −3.70950e7 −0.918677 −0.459339 0.888261i \(-0.651914\pi\)
−0.459339 + 0.888261i \(0.651914\pi\)
\(150\) 0 0
\(151\) 1.82394e7 0.431114 0.215557 0.976491i \(-0.430843\pi\)
0.215557 + 0.976491i \(0.430843\pi\)
\(152\) 0 0
\(153\) 1.83049e7 0.413189
\(154\) 0 0
\(155\) −9.85867e7 −2.12646
\(156\) 0 0
\(157\) 2.12064e7 0.437340 0.218670 0.975799i \(-0.429828\pi\)
0.218670 + 0.975799i \(0.429828\pi\)
\(158\) 0 0
\(159\) −4.69258e7 −0.925810
\(160\) 0 0
\(161\) 1.19776e7 0.226193
\(162\) 0 0
\(163\) 4.50953e7 0.815595 0.407797 0.913072i \(-0.366297\pi\)
0.407797 + 0.913072i \(0.366297\pi\)
\(164\) 0 0
\(165\) −7.76503e7 −1.34570
\(166\) 0 0
\(167\) 6.32823e7 1.05142 0.525708 0.850665i \(-0.323801\pi\)
0.525708 + 0.850665i \(0.323801\pi\)
\(168\) 0 0
\(169\) 1.46624e8 2.33670
\(170\) 0 0
\(171\) −2.50520e7 −0.383138
\(172\) 0 0
\(173\) −3.34193e7 −0.490722 −0.245361 0.969432i \(-0.578907\pi\)
−0.245361 + 0.969432i \(0.578907\pi\)
\(174\) 0 0
\(175\) −5.77270e7 −0.814227
\(176\) 0 0
\(177\) −5.95260e7 −0.806863
\(178\) 0 0
\(179\) −1.29965e8 −1.69372 −0.846861 0.531814i \(-0.821511\pi\)
−0.846861 + 0.531814i \(0.821511\pi\)
\(180\) 0 0
\(181\) 1.91607e7 0.240180 0.120090 0.992763i \(-0.461682\pi\)
0.120090 + 0.992763i \(0.461682\pi\)
\(182\) 0 0
\(183\) −1.74776e6 −0.0210816
\(184\) 0 0
\(185\) 5.67961e7 0.659504
\(186\) 0 0
\(187\) −1.07942e8 −1.20710
\(188\) 0 0
\(189\) 3.81776e7 0.411332
\(190\) 0 0
\(191\) 3.54364e7 0.367987 0.183994 0.982927i \(-0.441097\pi\)
0.183994 + 0.982927i \(0.441097\pi\)
\(192\) 0 0
\(193\) 1.80339e8 1.80567 0.902837 0.429983i \(-0.141481\pi\)
0.902837 + 0.429983i \(0.141481\pi\)
\(194\) 0 0
\(195\) 2.78445e8 2.68917
\(196\) 0 0
\(197\) −1.39463e8 −1.29965 −0.649826 0.760083i \(-0.725158\pi\)
−0.649826 + 0.760083i \(0.725158\pi\)
\(198\) 0 0
\(199\) 1.46312e8 1.31612 0.658060 0.752965i \(-0.271377\pi\)
0.658060 + 0.752965i \(0.271377\pi\)
\(200\) 0 0
\(201\) 1.19590e8 1.03874
\(202\) 0 0
\(203\) −1.23049e7 −0.103238
\(204\) 0 0
\(205\) −1.22112e8 −0.989969
\(206\) 0 0
\(207\) 2.38956e7 0.187250
\(208\) 0 0
\(209\) 1.47728e8 1.11931
\(210\) 0 0
\(211\) −1.02935e8 −0.754351 −0.377176 0.926142i \(-0.623105\pi\)
−0.377176 + 0.926142i \(0.623105\pi\)
\(212\) 0 0
\(213\) −6.55324e7 −0.464651
\(214\) 0 0
\(215\) −1.50035e7 −0.102958
\(216\) 0 0
\(217\) −6.81193e7 −0.452544
\(218\) 0 0
\(219\) −1.49993e8 −0.964978
\(220\) 0 0
\(221\) 3.87067e8 2.41220
\(222\) 0 0
\(223\) −3.26446e8 −1.97126 −0.985632 0.168906i \(-0.945977\pi\)
−0.985632 + 0.168906i \(0.945977\pi\)
\(224\) 0 0
\(225\) −1.15167e8 −0.674044
\(226\) 0 0
\(227\) −8.99538e7 −0.510422 −0.255211 0.966885i \(-0.582145\pi\)
−0.255211 + 0.966885i \(0.582145\pi\)
\(228\) 0 0
\(229\) −1.01929e8 −0.560886 −0.280443 0.959871i \(-0.590481\pi\)
−0.280443 + 0.959871i \(0.590481\pi\)
\(230\) 0 0
\(231\) −5.36531e7 −0.286387
\(232\) 0 0
\(233\) −4.26915e7 −0.221103 −0.110552 0.993870i \(-0.535262\pi\)
−0.110552 + 0.993870i \(0.535262\pi\)
\(234\) 0 0
\(235\) 1.51521e8 0.761616
\(236\) 0 0
\(237\) 7.78821e7 0.380030
\(238\) 0 0
\(239\) −6.02163e7 −0.285313 −0.142656 0.989772i \(-0.545564\pi\)
−0.142656 + 0.989772i \(0.545564\pi\)
\(240\) 0 0
\(241\) −4.71536e7 −0.216998 −0.108499 0.994097i \(-0.534604\pi\)
−0.108499 + 0.994097i \(0.534604\pi\)
\(242\) 0 0
\(243\) 1.34179e8 0.599876
\(244\) 0 0
\(245\) −5.84024e7 −0.253717
\(246\) 0 0
\(247\) −5.29736e8 −2.23677
\(248\) 0 0
\(249\) −3.21251e8 −1.31870
\(250\) 0 0
\(251\) 1.94014e8 0.774416 0.387208 0.921992i \(-0.373440\pi\)
0.387208 + 0.921992i \(0.373440\pi\)
\(252\) 0 0
\(253\) −1.40909e8 −0.547037
\(254\) 0 0
\(255\) 5.14761e8 1.94408
\(256\) 0 0
\(257\) −6.78743e7 −0.249425 −0.124712 0.992193i \(-0.539801\pi\)
−0.124712 + 0.992193i \(0.539801\pi\)
\(258\) 0 0
\(259\) 3.92437e7 0.140353
\(260\) 0 0
\(261\) −2.45485e7 −0.0854640
\(262\) 0 0
\(263\) 1.61200e8 0.546410 0.273205 0.961956i \(-0.411916\pi\)
0.273205 + 0.961956i \(0.411916\pi\)
\(264\) 0 0
\(265\) 6.00921e8 1.98361
\(266\) 0 0
\(267\) −2.52213e8 −0.810920
\(268\) 0 0
\(269\) −2.64104e8 −0.827261 −0.413631 0.910445i \(-0.635739\pi\)
−0.413631 + 0.910445i \(0.635739\pi\)
\(270\) 0 0
\(271\) −4.92433e7 −0.150299 −0.0751493 0.997172i \(-0.523943\pi\)
−0.0751493 + 0.997172i \(0.523943\pi\)
\(272\) 0 0
\(273\) 1.92394e8 0.572298
\(274\) 0 0
\(275\) 6.79123e8 1.96917
\(276\) 0 0
\(277\) −2.85803e8 −0.807957 −0.403978 0.914769i \(-0.632373\pi\)
−0.403978 + 0.914769i \(0.632373\pi\)
\(278\) 0 0
\(279\) −1.35900e8 −0.374631
\(280\) 0 0
\(281\) 5.50944e8 1.48127 0.740637 0.671905i \(-0.234524\pi\)
0.740637 + 0.671905i \(0.234524\pi\)
\(282\) 0 0
\(283\) 2.84145e8 0.745226 0.372613 0.927987i \(-0.378462\pi\)
0.372613 + 0.927987i \(0.378462\pi\)
\(284\) 0 0
\(285\) −7.04498e8 −1.80270
\(286\) 0 0
\(287\) −8.43745e7 −0.210681
\(288\) 0 0
\(289\) 3.05231e8 0.743852
\(290\) 0 0
\(291\) −4.45337e8 −1.05941
\(292\) 0 0
\(293\) 4.33632e7 0.100713 0.0503564 0.998731i \(-0.483964\pi\)
0.0503564 + 0.998731i \(0.483964\pi\)
\(294\) 0 0
\(295\) 7.62276e8 1.72876
\(296\) 0 0
\(297\) −4.49136e8 −0.994788
\(298\) 0 0
\(299\) 5.05283e8 1.09317
\(300\) 0 0
\(301\) −1.03668e7 −0.0219110
\(302\) 0 0
\(303\) −2.67652e8 −0.552741
\(304\) 0 0
\(305\) 2.23814e7 0.0451688
\(306\) 0 0
\(307\) −4.07582e8 −0.803954 −0.401977 0.915650i \(-0.631677\pi\)
−0.401977 + 0.915650i \(0.631677\pi\)
\(308\) 0 0
\(309\) 1.61802e8 0.311983
\(310\) 0 0
\(311\) 7.68264e8 1.44827 0.724134 0.689659i \(-0.242240\pi\)
0.724134 + 0.689659i \(0.242240\pi\)
\(312\) 0 0
\(313\) 4.31310e8 0.795031 0.397515 0.917596i \(-0.369873\pi\)
0.397515 + 0.917596i \(0.369873\pi\)
\(314\) 0 0
\(315\) −1.16514e8 −0.210035
\(316\) 0 0
\(317\) 1.57984e8 0.278551 0.139276 0.990254i \(-0.455523\pi\)
0.139276 + 0.990254i \(0.455523\pi\)
\(318\) 0 0
\(319\) 1.44759e8 0.249677
\(320\) 0 0
\(321\) −2.58051e8 −0.435450
\(322\) 0 0
\(323\) −9.79323e8 −1.61703
\(324\) 0 0
\(325\) −2.43526e9 −3.93507
\(326\) 0 0
\(327\) −4.31818e8 −0.682941
\(328\) 0 0
\(329\) 1.04695e8 0.162084
\(330\) 0 0
\(331\) 9.75366e8 1.47832 0.739162 0.673527i \(-0.235222\pi\)
0.739162 + 0.673527i \(0.235222\pi\)
\(332\) 0 0
\(333\) 7.82922e7 0.116189
\(334\) 0 0
\(335\) −1.53144e9 −2.22557
\(336\) 0 0
\(337\) −9.07880e8 −1.29218 −0.646091 0.763260i \(-0.723597\pi\)
−0.646091 + 0.763260i \(0.723597\pi\)
\(338\) 0 0
\(339\) 1.62174e8 0.226090
\(340\) 0 0
\(341\) 8.01382e8 1.09446
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) 6.71977e8 0.881024
\(346\) 0 0
\(347\) −5.79720e7 −0.0744843 −0.0372422 0.999306i \(-0.511857\pi\)
−0.0372422 + 0.999306i \(0.511857\pi\)
\(348\) 0 0
\(349\) −1.33879e9 −1.68587 −0.842935 0.538016i \(-0.819174\pi\)
−0.842935 + 0.538016i \(0.819174\pi\)
\(350\) 0 0
\(351\) 1.61055e9 1.98792
\(352\) 0 0
\(353\) 5.82234e8 0.704509 0.352254 0.935904i \(-0.385415\pi\)
0.352254 + 0.935904i \(0.385415\pi\)
\(354\) 0 0
\(355\) 8.39192e8 0.995548
\(356\) 0 0
\(357\) 3.55678e8 0.413731
\(358\) 0 0
\(359\) −3.20435e8 −0.365518 −0.182759 0.983158i \(-0.558503\pi\)
−0.182759 + 0.983158i \(0.558503\pi\)
\(360\) 0 0
\(361\) 4.46421e8 0.499424
\(362\) 0 0
\(363\) −1.24219e8 −0.136306
\(364\) 0 0
\(365\) 1.92078e9 2.06753
\(366\) 0 0
\(367\) 6.55277e8 0.691981 0.345990 0.938238i \(-0.387543\pi\)
0.345990 + 0.938238i \(0.387543\pi\)
\(368\) 0 0
\(369\) −1.68329e8 −0.174408
\(370\) 0 0
\(371\) 4.15211e8 0.422144
\(372\) 0 0
\(373\) −5.42928e8 −0.541703 −0.270851 0.962621i \(-0.587305\pi\)
−0.270851 + 0.962621i \(0.587305\pi\)
\(374\) 0 0
\(375\) −1.73527e9 −1.69925
\(376\) 0 0
\(377\) −5.19090e8 −0.498940
\(378\) 0 0
\(379\) −1.57480e9 −1.48590 −0.742949 0.669348i \(-0.766573\pi\)
−0.742949 + 0.669348i \(0.766573\pi\)
\(380\) 0 0
\(381\) 1.41608e9 1.31174
\(382\) 0 0
\(383\) −8.88822e8 −0.808386 −0.404193 0.914674i \(-0.632448\pi\)
−0.404193 + 0.914674i \(0.632448\pi\)
\(384\) 0 0
\(385\) 6.87069e8 0.613603
\(386\) 0 0
\(387\) −2.06820e7 −0.0181387
\(388\) 0 0
\(389\) 1.34673e9 1.15999 0.579997 0.814619i \(-0.303054\pi\)
0.579997 + 0.814619i \(0.303054\pi\)
\(390\) 0 0
\(391\) 9.34116e8 0.790282
\(392\) 0 0
\(393\) 1.96990e9 1.63708
\(394\) 0 0
\(395\) −9.97340e8 −0.814242
\(396\) 0 0
\(397\) 2.15927e9 1.73197 0.865985 0.500070i \(-0.166693\pi\)
0.865985 + 0.500070i \(0.166693\pi\)
\(398\) 0 0
\(399\) −4.86778e8 −0.383642
\(400\) 0 0
\(401\) −1.87617e9 −1.45300 −0.726500 0.687166i \(-0.758854\pi\)
−0.726500 + 0.687166i \(0.758854\pi\)
\(402\) 0 0
\(403\) −2.87366e9 −2.18710
\(404\) 0 0
\(405\) 1.39897e9 1.04644
\(406\) 0 0
\(407\) −4.61678e8 −0.339437
\(408\) 0 0
\(409\) 2.27449e6 0.00164381 0.000821906 1.00000i \(-0.499738\pi\)
0.000821906 1.00000i \(0.499738\pi\)
\(410\) 0 0
\(411\) 1.17826e9 0.837135
\(412\) 0 0
\(413\) 5.26700e8 0.367907
\(414\) 0 0
\(415\) 4.11387e9 2.82542
\(416\) 0 0
\(417\) −1.13213e9 −0.764577
\(418\) 0 0
\(419\) −2.40944e9 −1.60017 −0.800087 0.599884i \(-0.795213\pi\)
−0.800087 + 0.599884i \(0.795213\pi\)
\(420\) 0 0
\(421\) −1.08307e9 −0.707404 −0.353702 0.935358i \(-0.615077\pi\)
−0.353702 + 0.935358i \(0.615077\pi\)
\(422\) 0 0
\(423\) 2.08869e8 0.134178
\(424\) 0 0
\(425\) −4.50205e9 −2.84479
\(426\) 0 0
\(427\) 1.54646e7 0.00961262
\(428\) 0 0
\(429\) −2.26340e9 −1.38408
\(430\) 0 0
\(431\) 5.05987e8 0.304417 0.152208 0.988348i \(-0.451361\pi\)
0.152208 + 0.988348i \(0.451361\pi\)
\(432\) 0 0
\(433\) 3.73323e8 0.220992 0.110496 0.993877i \(-0.464756\pi\)
0.110496 + 0.993877i \(0.464756\pi\)
\(434\) 0 0
\(435\) −6.90339e8 −0.402115
\(436\) 0 0
\(437\) −1.27842e9 −0.732807
\(438\) 0 0
\(439\) −8.88930e6 −0.00501466 −0.00250733 0.999997i \(-0.500798\pi\)
−0.00250733 + 0.999997i \(0.500798\pi\)
\(440\) 0 0
\(441\) −8.05064e7 −0.0446988
\(442\) 0 0
\(443\) 1.02405e9 0.559638 0.279819 0.960053i \(-0.409726\pi\)
0.279819 + 0.960053i \(0.409726\pi\)
\(444\) 0 0
\(445\) 3.22978e9 1.73745
\(446\) 0 0
\(447\) −1.43798e9 −0.761510
\(448\) 0 0
\(449\) 8.32711e8 0.434142 0.217071 0.976156i \(-0.430350\pi\)
0.217071 + 0.976156i \(0.430350\pi\)
\(450\) 0 0
\(451\) 9.92615e8 0.509522
\(452\) 0 0
\(453\) 7.07047e8 0.357359
\(454\) 0 0
\(455\) −2.46375e9 −1.22619
\(456\) 0 0
\(457\) −2.28781e9 −1.12128 −0.560639 0.828060i \(-0.689444\pi\)
−0.560639 + 0.828060i \(0.689444\pi\)
\(458\) 0 0
\(459\) 2.97742e9 1.43713
\(460\) 0 0
\(461\) 7.84459e8 0.372921 0.186461 0.982462i \(-0.440298\pi\)
0.186461 + 0.982462i \(0.440298\pi\)
\(462\) 0 0
\(463\) −2.31590e9 −1.08439 −0.542196 0.840252i \(-0.682407\pi\)
−0.542196 + 0.840252i \(0.682407\pi\)
\(464\) 0 0
\(465\) −3.82169e9 −1.76267
\(466\) 0 0
\(467\) −6.12659e8 −0.278362 −0.139181 0.990267i \(-0.544447\pi\)
−0.139181 + 0.990267i \(0.544447\pi\)
\(468\) 0 0
\(469\) −1.05816e9 −0.473637
\(470\) 0 0
\(471\) 8.22063e8 0.362520
\(472\) 0 0
\(473\) 1.21959e8 0.0529908
\(474\) 0 0
\(475\) 6.16147e9 2.63789
\(476\) 0 0
\(477\) 8.28356e8 0.349464
\(478\) 0 0
\(479\) 7.28950e8 0.303056 0.151528 0.988453i \(-0.451581\pi\)
0.151528 + 0.988453i \(0.451581\pi\)
\(480\) 0 0
\(481\) 1.65553e9 0.678310
\(482\) 0 0
\(483\) 4.64308e8 0.187496
\(484\) 0 0
\(485\) 5.70287e9 2.26985
\(486\) 0 0
\(487\) −8.68384e8 −0.340691 −0.170346 0.985384i \(-0.554488\pi\)
−0.170346 + 0.985384i \(0.554488\pi\)
\(488\) 0 0
\(489\) 1.74811e9 0.676063
\(490\) 0 0
\(491\) −3.47503e9 −1.32487 −0.662435 0.749119i \(-0.730477\pi\)
−0.662435 + 0.749119i \(0.730477\pi\)
\(492\) 0 0
\(493\) −9.59641e8 −0.360699
\(494\) 0 0
\(495\) 1.37072e9 0.507961
\(496\) 0 0
\(497\) 5.79846e8 0.211868
\(498\) 0 0
\(499\) −3.68171e9 −1.32647 −0.663236 0.748410i \(-0.730817\pi\)
−0.663236 + 0.748410i \(0.730817\pi\)
\(500\) 0 0
\(501\) 2.45312e9 0.871540
\(502\) 0 0
\(503\) 3.79099e9 1.32820 0.664102 0.747642i \(-0.268814\pi\)
0.664102 + 0.747642i \(0.268814\pi\)
\(504\) 0 0
\(505\) 3.42749e9 1.18429
\(506\) 0 0
\(507\) 5.68385e9 1.93693
\(508\) 0 0
\(509\) −4.09313e9 −1.37576 −0.687880 0.725824i \(-0.741459\pi\)
−0.687880 + 0.725824i \(0.741459\pi\)
\(510\) 0 0
\(511\) 1.32718e9 0.440003
\(512\) 0 0
\(513\) −4.07488e9 −1.33261
\(514\) 0 0
\(515\) −2.07200e9 −0.668445
\(516\) 0 0
\(517\) −1.23167e9 −0.391993
\(518\) 0 0
\(519\) −1.29549e9 −0.406770
\(520\) 0 0
\(521\) 1.69546e9 0.525237 0.262618 0.964900i \(-0.415414\pi\)
0.262618 + 0.964900i \(0.415414\pi\)
\(522\) 0 0
\(523\) −1.53714e9 −0.469849 −0.234924 0.972014i \(-0.575484\pi\)
−0.234924 + 0.972014i \(0.575484\pi\)
\(524\) 0 0
\(525\) −2.23777e9 −0.674929
\(526\) 0 0
\(527\) −5.31254e9 −1.58112
\(528\) 0 0
\(529\) −2.18542e9 −0.641858
\(530\) 0 0
\(531\) 1.05078e9 0.304566
\(532\) 0 0
\(533\) −3.55940e9 −1.01820
\(534\) 0 0
\(535\) 3.30454e9 0.932982
\(536\) 0 0
\(537\) −5.03808e9 −1.40396
\(538\) 0 0
\(539\) 4.74736e8 0.130584
\(540\) 0 0
\(541\) −4.34509e9 −1.17980 −0.589901 0.807476i \(-0.700833\pi\)
−0.589901 + 0.807476i \(0.700833\pi\)
\(542\) 0 0
\(543\) 7.42760e8 0.199090
\(544\) 0 0
\(545\) 5.52976e9 1.46325
\(546\) 0 0
\(547\) 2.30195e9 0.601367 0.300683 0.953724i \(-0.402785\pi\)
0.300683 + 0.953724i \(0.402785\pi\)
\(548\) 0 0
\(549\) 3.08523e7 0.00795764
\(550\) 0 0
\(551\) 1.31336e9 0.334466
\(552\) 0 0
\(553\) −6.89120e8 −0.173283
\(554\) 0 0
\(555\) 2.20169e9 0.546676
\(556\) 0 0
\(557\) 1.71107e9 0.419541 0.209770 0.977751i \(-0.432728\pi\)
0.209770 + 0.977751i \(0.432728\pi\)
\(558\) 0 0
\(559\) −4.37332e8 −0.105894
\(560\) 0 0
\(561\) −4.18434e9 −1.00059
\(562\) 0 0
\(563\) 2.16633e9 0.511617 0.255809 0.966727i \(-0.417658\pi\)
0.255809 + 0.966727i \(0.417658\pi\)
\(564\) 0 0
\(565\) −2.07676e9 −0.484415
\(566\) 0 0
\(567\) 9.66630e8 0.222700
\(568\) 0 0
\(569\) −2.76063e9 −0.628225 −0.314112 0.949386i \(-0.601707\pi\)
−0.314112 + 0.949386i \(0.601707\pi\)
\(570\) 0 0
\(571\) 7.25907e8 0.163175 0.0815877 0.996666i \(-0.474001\pi\)
0.0815877 + 0.996666i \(0.474001\pi\)
\(572\) 0 0
\(573\) 1.37368e9 0.305032
\(574\) 0 0
\(575\) −5.87705e9 −1.28921
\(576\) 0 0
\(577\) −5.37035e9 −1.16382 −0.581911 0.813252i \(-0.697695\pi\)
−0.581911 + 0.813252i \(0.697695\pi\)
\(578\) 0 0
\(579\) 6.99080e9 1.49676
\(580\) 0 0
\(581\) 2.84251e9 0.601292
\(582\) 0 0
\(583\) −4.88471e9 −1.02094
\(584\) 0 0
\(585\) −4.91524e9 −1.01508
\(586\) 0 0
\(587\) −7.86145e9 −1.60424 −0.802120 0.597163i \(-0.796295\pi\)
−0.802120 + 0.597163i \(0.796295\pi\)
\(588\) 0 0
\(589\) 7.27069e9 1.46613
\(590\) 0 0
\(591\) −5.40625e9 −1.07731
\(592\) 0 0
\(593\) 5.44412e9 1.07210 0.536051 0.844185i \(-0.319915\pi\)
0.536051 + 0.844185i \(0.319915\pi\)
\(594\) 0 0
\(595\) −4.55473e9 −0.886448
\(596\) 0 0
\(597\) 5.67177e9 1.09096
\(598\) 0 0
\(599\) 7.97408e9 1.51596 0.757978 0.652280i \(-0.226188\pi\)
0.757978 + 0.652280i \(0.226188\pi\)
\(600\) 0 0
\(601\) −6.27378e8 −0.117888 −0.0589439 0.998261i \(-0.518773\pi\)
−0.0589439 + 0.998261i \(0.518773\pi\)
\(602\) 0 0
\(603\) −2.11105e9 −0.392092
\(604\) 0 0
\(605\) 1.59072e9 0.292046
\(606\) 0 0
\(607\) 3.79758e9 0.689202 0.344601 0.938749i \(-0.388014\pi\)
0.344601 + 0.938749i \(0.388014\pi\)
\(608\) 0 0
\(609\) −4.76995e8 −0.0855763
\(610\) 0 0
\(611\) 4.41663e9 0.783334
\(612\) 0 0
\(613\) 1.06120e10 1.86074 0.930369 0.366625i \(-0.119487\pi\)
0.930369 + 0.366625i \(0.119487\pi\)
\(614\) 0 0
\(615\) −4.73366e9 −0.820605
\(616\) 0 0
\(617\) 2.26828e8 0.0388776 0.0194388 0.999811i \(-0.493812\pi\)
0.0194388 + 0.999811i \(0.493812\pi\)
\(618\) 0 0
\(619\) 4.91801e9 0.833435 0.416718 0.909036i \(-0.363180\pi\)
0.416718 + 0.909036i \(0.363180\pi\)
\(620\) 0 0
\(621\) 3.88678e9 0.651282
\(622\) 0 0
\(623\) 2.23164e9 0.369757
\(624\) 0 0
\(625\) 9.07300e9 1.48652
\(626\) 0 0
\(627\) 5.72665e9 0.927821
\(628\) 0 0
\(629\) 3.06057e9 0.490371
\(630\) 0 0
\(631\) 6.22228e9 0.985931 0.492966 0.870049i \(-0.335913\pi\)
0.492966 + 0.870049i \(0.335913\pi\)
\(632\) 0 0
\(633\) −3.99024e9 −0.625297
\(634\) 0 0
\(635\) −1.81339e10 −2.81050
\(636\) 0 0
\(637\) −1.70235e9 −0.260952
\(638\) 0 0
\(639\) 1.15681e9 0.175391
\(640\) 0 0
\(641\) −2.71355e9 −0.406944 −0.203472 0.979081i \(-0.565223\pi\)
−0.203472 + 0.979081i \(0.565223\pi\)
\(642\) 0 0
\(643\) −5.96086e9 −0.884240 −0.442120 0.896956i \(-0.645774\pi\)
−0.442120 + 0.896956i \(0.645774\pi\)
\(644\) 0 0
\(645\) −5.81609e8 −0.0853438
\(646\) 0 0
\(647\) 1.87137e9 0.271640 0.135820 0.990734i \(-0.456633\pi\)
0.135820 + 0.990734i \(0.456633\pi\)
\(648\) 0 0
\(649\) −6.19631e9 −0.889768
\(650\) 0 0
\(651\) −2.64063e9 −0.375123
\(652\) 0 0
\(653\) 8.68243e9 1.22024 0.610120 0.792309i \(-0.291121\pi\)
0.610120 + 0.792309i \(0.291121\pi\)
\(654\) 0 0
\(655\) −2.52261e10 −3.50756
\(656\) 0 0
\(657\) 2.64775e9 0.364249
\(658\) 0 0
\(659\) 1.17028e10 1.59291 0.796457 0.604696i \(-0.206705\pi\)
0.796457 + 0.604696i \(0.206705\pi\)
\(660\) 0 0
\(661\) −4.23524e9 −0.570391 −0.285195 0.958469i \(-0.592059\pi\)
−0.285195 + 0.958469i \(0.592059\pi\)
\(662\) 0 0
\(663\) 1.50046e10 1.99952
\(664\) 0 0
\(665\) 6.23357e9 0.821979
\(666\) 0 0
\(667\) −1.25273e9 −0.163462
\(668\) 0 0
\(669\) −1.26546e10 −1.63402
\(670\) 0 0
\(671\) −1.81932e8 −0.0232477
\(672\) 0 0
\(673\) −1.64366e9 −0.207854 −0.103927 0.994585i \(-0.533141\pi\)
−0.103927 + 0.994585i \(0.533141\pi\)
\(674\) 0 0
\(675\) −1.87327e10 −2.34442
\(676\) 0 0
\(677\) 1.08838e10 1.34810 0.674048 0.738688i \(-0.264554\pi\)
0.674048 + 0.738688i \(0.264554\pi\)
\(678\) 0 0
\(679\) 3.94045e9 0.483060
\(680\) 0 0
\(681\) −3.48704e9 −0.423099
\(682\) 0 0
\(683\) −3.85277e9 −0.462701 −0.231351 0.972870i \(-0.574314\pi\)
−0.231351 + 0.972870i \(0.574314\pi\)
\(684\) 0 0
\(685\) −1.50885e10 −1.79362
\(686\) 0 0
\(687\) −3.95126e9 −0.464930
\(688\) 0 0
\(689\) 1.75160e10 2.04018
\(690\) 0 0
\(691\) −1.55439e10 −1.79220 −0.896100 0.443852i \(-0.853612\pi\)
−0.896100 + 0.443852i \(0.853612\pi\)
\(692\) 0 0
\(693\) 9.47109e8 0.108102
\(694\) 0 0
\(695\) 1.44978e10 1.63816
\(696\) 0 0
\(697\) −6.58026e9 −0.736086
\(698\) 0 0
\(699\) −1.65493e9 −0.183277
\(700\) 0 0
\(701\) −7.75099e9 −0.849854 −0.424927 0.905228i \(-0.639700\pi\)
−0.424927 + 0.905228i \(0.639700\pi\)
\(702\) 0 0
\(703\) −4.18867e9 −0.454707
\(704\) 0 0
\(705\) 5.87369e9 0.631319
\(706\) 0 0
\(707\) 2.36825e9 0.252035
\(708\) 0 0
\(709\) −1.14664e10 −1.20827 −0.604137 0.796881i \(-0.706482\pi\)
−0.604137 + 0.796881i \(0.706482\pi\)
\(710\) 0 0
\(711\) −1.37481e9 −0.143450
\(712\) 0 0
\(713\) −6.93507e9 −0.716535
\(714\) 0 0
\(715\) 2.89845e10 2.96548
\(716\) 0 0
\(717\) −2.33427e9 −0.236502
\(718\) 0 0
\(719\) −1.63852e10 −1.64399 −0.821997 0.569492i \(-0.807140\pi\)
−0.821997 + 0.569492i \(0.807140\pi\)
\(720\) 0 0
\(721\) −1.43167e9 −0.142255
\(722\) 0 0
\(723\) −1.82790e9 −0.179874
\(724\) 0 0
\(725\) 6.03765e9 0.588416
\(726\) 0 0
\(727\) 1.66277e10 1.60495 0.802474 0.596687i \(-0.203517\pi\)
0.802474 + 0.596687i \(0.203517\pi\)
\(728\) 0 0
\(729\) 1.13647e10 1.08646
\(730\) 0 0
\(731\) −8.08495e8 −0.0765537
\(732\) 0 0
\(733\) 1.45773e10 1.36714 0.683568 0.729886i \(-0.260427\pi\)
0.683568 + 0.729886i \(0.260427\pi\)
\(734\) 0 0
\(735\) −2.26396e9 −0.210311
\(736\) 0 0
\(737\) 1.24486e10 1.14547
\(738\) 0 0
\(739\) 4.30003e9 0.391937 0.195968 0.980610i \(-0.437215\pi\)
0.195968 + 0.980610i \(0.437215\pi\)
\(740\) 0 0
\(741\) −2.05351e10 −1.85410
\(742\) 0 0
\(743\) −9.14731e9 −0.818150 −0.409075 0.912501i \(-0.634148\pi\)
−0.409075 + 0.912501i \(0.634148\pi\)
\(744\) 0 0
\(745\) 1.84144e10 1.63159
\(746\) 0 0
\(747\) 5.67088e9 0.497769
\(748\) 0 0
\(749\) 2.28330e9 0.198553
\(750\) 0 0
\(751\) 1.71874e9 0.148071 0.0740354 0.997256i \(-0.476412\pi\)
0.0740354 + 0.997256i \(0.476412\pi\)
\(752\) 0 0
\(753\) 7.52089e9 0.641929
\(754\) 0 0
\(755\) −9.05428e9 −0.765666
\(756\) 0 0
\(757\) −1.58386e10 −1.32703 −0.663517 0.748161i \(-0.730937\pi\)
−0.663517 + 0.748161i \(0.730937\pi\)
\(758\) 0 0
\(759\) −5.46230e9 −0.453450
\(760\) 0 0
\(761\) 3.29329e9 0.270884 0.135442 0.990785i \(-0.456755\pi\)
0.135442 + 0.990785i \(0.456755\pi\)
\(762\) 0 0
\(763\) 3.82083e9 0.311402
\(764\) 0 0
\(765\) −9.08680e9 −0.733831
\(766\) 0 0
\(767\) 2.22193e10 1.77806
\(768\) 0 0
\(769\) −1.80581e10 −1.43196 −0.715978 0.698123i \(-0.754019\pi\)
−0.715978 + 0.698123i \(0.754019\pi\)
\(770\) 0 0
\(771\) −2.63113e9 −0.206753
\(772\) 0 0
\(773\) −1.57529e10 −1.22668 −0.613342 0.789817i \(-0.710175\pi\)
−0.613342 + 0.789817i \(0.710175\pi\)
\(774\) 0 0
\(775\) 3.34242e10 2.57932
\(776\) 0 0
\(777\) 1.52127e9 0.116341
\(778\) 0 0
\(779\) 9.00569e9 0.682552
\(780\) 0 0
\(781\) −6.82154e9 −0.512394
\(782\) 0 0
\(783\) −3.99298e9 −0.297257
\(784\) 0 0
\(785\) −1.05271e10 −0.776724
\(786\) 0 0
\(787\) 1.02224e10 0.747551 0.373776 0.927519i \(-0.378063\pi\)
0.373776 + 0.927519i \(0.378063\pi\)
\(788\) 0 0
\(789\) 6.24886e9 0.452930
\(790\) 0 0
\(791\) −1.43495e9 −0.103091
\(792\) 0 0
\(793\) 6.52387e8 0.0464568
\(794\) 0 0
\(795\) 2.32946e10 1.64426
\(796\) 0 0
\(797\) 1.44391e10 1.01027 0.505134 0.863041i \(-0.331443\pi\)
0.505134 + 0.863041i \(0.331443\pi\)
\(798\) 0 0
\(799\) 8.16502e9 0.566296
\(800\) 0 0
\(801\) 4.45218e9 0.306097
\(802\) 0 0
\(803\) −1.56134e10 −1.06413
\(804\) 0 0
\(805\) −5.94582e9 −0.401722
\(806\) 0 0
\(807\) −1.02379e10 −0.685733
\(808\) 0 0
\(809\) −1.00885e10 −0.669897 −0.334949 0.942236i \(-0.608719\pi\)
−0.334949 + 0.942236i \(0.608719\pi\)
\(810\) 0 0
\(811\) 1.35981e9 0.0895172 0.0447586 0.998998i \(-0.485748\pi\)
0.0447586 + 0.998998i \(0.485748\pi\)
\(812\) 0 0
\(813\) −1.90890e9 −0.124585
\(814\) 0 0
\(815\) −2.23859e10 −1.44851
\(816\) 0 0
\(817\) 1.10650e9 0.0709862
\(818\) 0 0
\(819\) −3.39623e9 −0.216024
\(820\) 0 0
\(821\) −1.49802e10 −0.944751 −0.472375 0.881397i \(-0.656603\pi\)
−0.472375 + 0.881397i \(0.656603\pi\)
\(822\) 0 0
\(823\) −1.96016e10 −1.22572 −0.612861 0.790191i \(-0.709981\pi\)
−0.612861 + 0.790191i \(0.709981\pi\)
\(824\) 0 0
\(825\) 2.63260e10 1.63229
\(826\) 0 0
\(827\) 1.68768e9 0.103758 0.0518789 0.998653i \(-0.483479\pi\)
0.0518789 + 0.998653i \(0.483479\pi\)
\(828\) 0 0
\(829\) −1.64541e9 −0.100307 −0.0501536 0.998742i \(-0.515971\pi\)
−0.0501536 + 0.998742i \(0.515971\pi\)
\(830\) 0 0
\(831\) −1.10791e10 −0.669732
\(832\) 0 0
\(833\) −3.14713e9 −0.188650
\(834\) 0 0
\(835\) −3.14141e10 −1.86733
\(836\) 0 0
\(837\) −2.21050e10 −1.30302
\(838\) 0 0
\(839\) −3.49725e9 −0.204437 −0.102219 0.994762i \(-0.532594\pi\)
−0.102219 + 0.994762i \(0.532594\pi\)
\(840\) 0 0
\(841\) −1.59629e10 −0.925393
\(842\) 0 0
\(843\) 2.13572e10 1.22786
\(844\) 0 0
\(845\) −7.27861e10 −4.15002
\(846\) 0 0
\(847\) 1.09912e9 0.0621519
\(848\) 0 0
\(849\) 1.10148e10 0.617733
\(850\) 0 0
\(851\) 3.99531e9 0.222227
\(852\) 0 0
\(853\) 2.86798e10 1.58218 0.791088 0.611702i \(-0.209515\pi\)
0.791088 + 0.611702i \(0.209515\pi\)
\(854\) 0 0
\(855\) 1.24361e10 0.680461
\(856\) 0 0
\(857\) 3.67333e10 1.99355 0.996776 0.0802366i \(-0.0255676\pi\)
0.996776 + 0.0802366i \(0.0255676\pi\)
\(858\) 0 0
\(859\) 5.54734e9 0.298613 0.149306 0.988791i \(-0.452296\pi\)
0.149306 + 0.988791i \(0.452296\pi\)
\(860\) 0 0
\(861\) −3.27076e9 −0.174638
\(862\) 0 0
\(863\) 5.26057e9 0.278609 0.139305 0.990250i \(-0.455513\pi\)
0.139305 + 0.990250i \(0.455513\pi\)
\(864\) 0 0
\(865\) 1.65897e10 0.871532
\(866\) 0 0
\(867\) 1.18322e10 0.616594
\(868\) 0 0
\(869\) 8.10707e9 0.419078
\(870\) 0 0
\(871\) −4.46392e10 −2.28904
\(872\) 0 0
\(873\) 7.86129e9 0.399893
\(874\) 0 0
\(875\) 1.53541e10 0.774811
\(876\) 0 0
\(877\) 2.83160e10 1.41753 0.708767 0.705443i \(-0.249252\pi\)
0.708767 + 0.705443i \(0.249252\pi\)
\(878\) 0 0
\(879\) 1.68096e9 0.0834828
\(880\) 0 0
\(881\) −5.58205e9 −0.275029 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(882\) 0 0
\(883\) −2.81316e10 −1.37509 −0.687547 0.726140i \(-0.741312\pi\)
−0.687547 + 0.726140i \(0.741312\pi\)
\(884\) 0 0
\(885\) 2.95494e10 1.43300
\(886\) 0 0
\(887\) −9.92105e6 −0.000477337 0 −0.000238668 1.00000i \(-0.500076\pi\)
−0.000238668 1.00000i \(0.500076\pi\)
\(888\) 0 0
\(889\) −1.25298e10 −0.598119
\(890\) 0 0
\(891\) −1.13718e10 −0.538589
\(892\) 0 0
\(893\) −1.11746e10 −0.525111
\(894\) 0 0
\(895\) 6.45164e10 3.00808
\(896\) 0 0
\(897\) 1.95872e10 0.906147
\(898\) 0 0
\(899\) 7.12457e9 0.327039
\(900\) 0 0
\(901\) 3.23818e10 1.47491
\(902\) 0 0
\(903\) −4.01867e8 −0.0181625
\(904\) 0 0
\(905\) −9.51161e9 −0.426564
\(906\) 0 0
\(907\) −1.61173e9 −0.0717242 −0.0358621 0.999357i \(-0.511418\pi\)
−0.0358621 + 0.999357i \(0.511418\pi\)
\(908\) 0 0
\(909\) 4.72472e9 0.208642
\(910\) 0 0
\(911\) −2.31768e10 −1.01564 −0.507818 0.861464i \(-0.669548\pi\)
−0.507818 + 0.861464i \(0.669548\pi\)
\(912\) 0 0
\(913\) −3.34404e10 −1.45420
\(914\) 0 0
\(915\) 8.67611e8 0.0374413
\(916\) 0 0
\(917\) −1.74302e10 −0.746464
\(918\) 0 0
\(919\) −1.36641e10 −0.580733 −0.290367 0.956916i \(-0.593777\pi\)
−0.290367 + 0.956916i \(0.593777\pi\)
\(920\) 0 0
\(921\) −1.57998e10 −0.666414
\(922\) 0 0
\(923\) 2.44613e10 1.02394
\(924\) 0 0
\(925\) −1.92558e10 −0.799953
\(926\) 0 0
\(927\) −2.85621e9 −0.117764
\(928\) 0 0
\(929\) −3.34282e10 −1.36791 −0.683956 0.729523i \(-0.739742\pi\)
−0.683956 + 0.729523i \(0.739742\pi\)
\(930\) 0 0
\(931\) 4.30713e9 0.174930
\(932\) 0 0
\(933\) 2.97816e10 1.20050
\(934\) 0 0
\(935\) 5.35836e10 2.14384
\(936\) 0 0
\(937\) 1.04114e10 0.413450 0.206725 0.978399i \(-0.433720\pi\)
0.206725 + 0.978399i \(0.433720\pi\)
\(938\) 0 0
\(939\) 1.67196e10 0.659017
\(940\) 0 0
\(941\) 5.00017e10 1.95623 0.978117 0.208055i \(-0.0667134\pi\)
0.978117 + 0.208055i \(0.0667134\pi\)
\(942\) 0 0
\(943\) −8.58998e9 −0.333581
\(944\) 0 0
\(945\) −1.89518e10 −0.730533
\(946\) 0 0
\(947\) −1.82730e10 −0.699172 −0.349586 0.936904i \(-0.613678\pi\)
−0.349586 + 0.936904i \(0.613678\pi\)
\(948\) 0 0
\(949\) 5.59880e10 2.12649
\(950\) 0 0
\(951\) 6.12420e9 0.230897
\(952\) 0 0
\(953\) −1.24663e10 −0.466565 −0.233282 0.972409i \(-0.574947\pi\)
−0.233282 + 0.972409i \(0.574947\pi\)
\(954\) 0 0
\(955\) −1.75911e10 −0.653552
\(956\) 0 0
\(957\) 5.61156e9 0.206963
\(958\) 0 0
\(959\) −1.04256e10 −0.381710
\(960\) 0 0
\(961\) 1.19287e10 0.433573
\(962\) 0 0
\(963\) 4.55524e9 0.164369
\(964\) 0 0
\(965\) −8.95225e10 −3.20691
\(966\) 0 0
\(967\) 4.12045e9 0.146539 0.0732693 0.997312i \(-0.476657\pi\)
0.0732693 + 0.997312i \(0.476657\pi\)
\(968\) 0 0
\(969\) −3.79632e10 −1.34039
\(970\) 0 0
\(971\) −1.24238e10 −0.435499 −0.217749 0.976005i \(-0.569872\pi\)
−0.217749 + 0.976005i \(0.569872\pi\)
\(972\) 0 0
\(973\) 1.00174e10 0.348626
\(974\) 0 0
\(975\) −9.44021e10 −3.26186
\(976\) 0 0
\(977\) 4.51303e10 1.54824 0.774119 0.633041i \(-0.218193\pi\)
0.774119 + 0.633041i \(0.218193\pi\)
\(978\) 0 0
\(979\) −2.62539e10 −0.894241
\(980\) 0 0
\(981\) 7.62265e9 0.257789
\(982\) 0 0
\(983\) 5.75558e9 0.193264 0.0966321 0.995320i \(-0.469193\pi\)
0.0966321 + 0.995320i \(0.469193\pi\)
\(984\) 0 0
\(985\) 6.92312e10 2.30821
\(986\) 0 0
\(987\) 4.05847e9 0.134355
\(988\) 0 0
\(989\) −1.05542e9 −0.0346928
\(990\) 0 0
\(991\) −3.64108e10 −1.18843 −0.594214 0.804307i \(-0.702537\pi\)
−0.594214 + 0.804307i \(0.702537\pi\)
\(992\) 0 0
\(993\) 3.78098e10 1.22541
\(994\) 0 0
\(995\) −7.26313e10 −2.33745
\(996\) 0 0
\(997\) 1.13033e10 0.361220 0.180610 0.983555i \(-0.442193\pi\)
0.180610 + 0.983555i \(0.442193\pi\)
\(998\) 0 0
\(999\) 1.27348e10 0.404121
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.8.a.b.1.2 2
3.2 odd 2 252.8.a.f.1.2 2
4.3 odd 2 112.8.a.h.1.1 2
7.2 even 3 196.8.e.b.165.1 4
7.3 odd 6 196.8.e.c.177.2 4
7.4 even 3 196.8.e.b.177.1 4
7.5 odd 6 196.8.e.c.165.2 4
7.6 odd 2 196.8.a.a.1.1 2
8.3 odd 2 448.8.a.q.1.2 2
8.5 even 2 448.8.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.b.1.2 2 1.1 even 1 trivial
112.8.a.h.1.1 2 4.3 odd 2
196.8.a.a.1.1 2 7.6 odd 2
196.8.e.b.165.1 4 7.2 even 3
196.8.e.b.177.1 4 7.4 even 3
196.8.e.c.165.2 4 7.5 odd 6
196.8.e.c.177.2 4 7.3 odd 6
252.8.a.f.1.2 2 3.2 odd 2
448.8.a.o.1.1 2 8.5 even 2
448.8.a.q.1.2 2 8.3 odd 2