Properties

Label 196.8.e.b.165.1
Level $196$
Weight $8$
Character 196.165
Analytic conductor $61.227$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,8,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.2274649949\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{1009})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 253x^{2} + 252x + 63504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.1
Root \(8.19119 - 14.1876i\) of defining polynomial
Character \(\chi\) \(=\) 196.165
Dual form 196.8.e.b.177.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-19.3824 + 33.5713i) q^{3} +(248.206 + 429.906i) q^{5} +(342.147 + 592.615i) q^{9} +(-2017.59 + 3494.57i) q^{11} -14469.7 q^{13} -19243.3 q^{15} +(13375.1 - 23166.3i) q^{17} +(-18305.0 - 31705.2i) q^{19} +(17460.0 + 30241.7i) q^{23} +(-84150.1 + 145752. i) q^{25} -111305. q^{27} +35874.3 q^{29} +(-99299.2 + 171991. i) q^{31} +(-78211.5 - 135466. i) q^{33} +(57206.6 + 99084.7i) q^{37} +(280458. - 485767. i) q^{39} +245990. q^{41} +30224.0 q^{43} +(-169846. + 294182. i) q^{45} +(152616. + 264339. i) q^{47} +(518481. + 898036. i) q^{51} +(605264. - 1.04835e6i) q^{53} -2.00312e6 q^{55} +1.41918e6 q^{57} +(767785. - 1.32984e6i) q^{59} +(22543.2 + 39045.9i) q^{61} +(-3.59147e6 - 6.22061e6i) q^{65} +(-1.54250e6 + 2.67169e6i) q^{67} -1.35367e6 q^{69} -1.69051e6 q^{71} +(1.93466e6 - 3.35093e6i) q^{73} +(-3.26206e6 - 5.65005e6i) q^{75} +(-1.00455e6 - 1.73993e6i) q^{79} +(1.40908e6 - 2.44060e6i) q^{81} -8.28720e6 q^{83} +1.32791e7 q^{85} +(-695328. + 1.20434e6i) q^{87} +(3.25312e6 + 5.63457e6i) q^{89} +(-3.84931e6 - 6.66720e6i) q^{93} +(9.08683e6 - 1.57389e7i) q^{95} -1.14882e7 q^{97} -2.76125e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{3} + 294 q^{5} + 2258 q^{9} + 3492 q^{11} - 32340 q^{13} - 48512 q^{15} + 29232 q^{17} + 3206 q^{19} + 9360 q^{23} - 131146 q^{25} - 36344 q^{27} + 369408 q^{29} - 165060 q^{31} - 342832 q^{33}+ \cdots + 18168664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −19.3824 + 33.5713i −0.414460 + 0.717866i −0.995372 0.0961008i \(-0.969363\pi\)
0.580912 + 0.813967i \(0.302696\pi\)
\(4\) 0 0
\(5\) 248.206 + 429.906i 0.888009 + 1.53808i 0.842225 + 0.539126i \(0.181245\pi\)
0.0457844 + 0.998951i \(0.485421\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 342.147 + 592.615i 0.156446 + 0.270972i
\(10\) 0 0
\(11\) −2017.59 + 3494.57i −0.457045 + 0.791626i −0.998803 0.0489089i \(-0.984426\pi\)
0.541758 + 0.840535i \(0.317759\pi\)
\(12\) 0 0
\(13\) −14469.7 −1.82666 −0.913331 0.407217i \(-0.866499\pi\)
−0.913331 + 0.407217i \(0.866499\pi\)
\(14\) 0 0
\(15\) −19243.3 −1.47218
\(16\) 0 0
\(17\) 13375.1 23166.3i 0.660275 1.14363i −0.320268 0.947327i \(-0.603773\pi\)
0.980543 0.196303i \(-0.0628936\pi\)
\(18\) 0 0
\(19\) −18305.0 31705.2i −0.612255 1.06046i −0.990859 0.134898i \(-0.956929\pi\)
0.378605 0.925558i \(-0.376404\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 17460.0 + 30241.7i 0.299225 + 0.518272i 0.975959 0.217955i \(-0.0699386\pi\)
−0.676734 + 0.736228i \(0.736605\pi\)
\(24\) 0 0
\(25\) −84150.1 + 145752.i −1.07712 + 1.86563i
\(26\) 0 0
\(27\) −111305. −1.08828
\(28\) 0 0
\(29\) 35874.3 0.273143 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(30\) 0 0
\(31\) −99299.2 + 171991.i −0.598660 + 1.03691i 0.394360 + 0.918956i \(0.370966\pi\)
−0.993019 + 0.117953i \(0.962367\pi\)
\(32\) 0 0
\(33\) −78211.5 135466.i −0.378854 0.656194i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 57206.6 + 99084.7i 0.185669 + 0.321589i 0.943802 0.330512i \(-0.107221\pi\)
−0.758133 + 0.652100i \(0.773888\pi\)
\(38\) 0 0
\(39\) 280458. 485767.i 0.757079 1.31130i
\(40\) 0 0
\(41\) 245990. 0.557409 0.278704 0.960377i \(-0.410095\pi\)
0.278704 + 0.960377i \(0.410095\pi\)
\(42\) 0 0
\(43\) 30224.0 0.0579711 0.0289856 0.999580i \(-0.490772\pi\)
0.0289856 + 0.999580i \(0.490772\pi\)
\(44\) 0 0
\(45\) −169846. + 294182.i −0.277850 + 0.481251i
\(46\) 0 0
\(47\) 152616. + 264339.i 0.214417 + 0.371381i 0.953092 0.302681i \(-0.0978816\pi\)
−0.738675 + 0.674061i \(0.764548\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 518481. + 898036.i 0.547315 + 0.947978i
\(52\) 0 0
\(53\) 605264. 1.04835e6i 0.558444 0.967253i −0.439183 0.898398i \(-0.644732\pi\)
0.997627 0.0688551i \(-0.0219346\pi\)
\(54\) 0 0
\(55\) −2.00312e6 −1.62344
\(56\) 0 0
\(57\) 1.41918e6 1.01502
\(58\) 0 0
\(59\) 767785. 1.32984e6i 0.486696 0.842981i −0.513188 0.858277i \(-0.671535\pi\)
0.999883 + 0.0152952i \(0.00486879\pi\)
\(60\) 0 0
\(61\) 22543.2 + 39045.9i 0.0127163 + 0.0220253i 0.872314 0.488947i \(-0.162619\pi\)
−0.859597 + 0.510972i \(0.829285\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.59147e6 6.22061e6i −1.62209 2.80955i
\(66\) 0 0
\(67\) −1.54250e6 + 2.67169e6i −0.626562 + 1.08524i 0.361674 + 0.932305i \(0.382205\pi\)
−0.988236 + 0.152933i \(0.951128\pi\)
\(68\) 0 0
\(69\) −1.35367e6 −0.496067
\(70\) 0 0
\(71\) −1.69051e6 −0.560550 −0.280275 0.959920i \(-0.590426\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(72\) 0 0
\(73\) 1.93466e6 3.35093e6i 0.582069 1.00817i −0.413165 0.910656i \(-0.635577\pi\)
0.995234 0.0975172i \(-0.0310901\pi\)
\(74\) 0 0
\(75\) −3.26206e6 5.65005e6i −0.892848 1.54646i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00455e6 1.73993e6i −0.229232 0.397042i 0.728349 0.685207i \(-0.240288\pi\)
−0.957581 + 0.288165i \(0.906955\pi\)
\(80\) 0 0
\(81\) 1.40908e6 2.44060e6i 0.294604 0.510269i
\(82\) 0 0
\(83\) −8.28720e6 −1.59087 −0.795435 0.606039i \(-0.792758\pi\)
−0.795435 + 0.606039i \(0.792758\pi\)
\(84\) 0 0
\(85\) 1.32791e7 2.34532
\(86\) 0 0
\(87\) −695328. + 1.20434e6i −0.113207 + 0.196080i
\(88\) 0 0
\(89\) 3.25312e6 + 5.63457e6i 0.489142 + 0.847219i 0.999922 0.0124923i \(-0.00397654\pi\)
−0.510780 + 0.859712i \(0.670643\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.84931e6 6.66720e6i −0.496241 0.859515i
\(94\) 0 0
\(95\) 9.08683e6 1.57389e7i 1.08738 1.88339i
\(96\) 0 0
\(97\) −1.14882e7 −1.27806 −0.639028 0.769183i \(-0.720663\pi\)
−0.639028 + 0.769183i \(0.720663\pi\)
\(98\) 0 0
\(99\) −2.76125e6 −0.286011
\(100\) 0 0
\(101\) 3.45226e6 5.97950e6i 0.333410 0.577484i −0.649768 0.760133i \(-0.725134\pi\)
0.983178 + 0.182649i \(0.0584672\pi\)
\(102\) 0 0
\(103\) −2.08698e6 3.61475e6i −0.188186 0.325948i 0.756459 0.654041i \(-0.226928\pi\)
−0.944646 + 0.328093i \(0.893594\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.32843e6 + 5.76501e6i 0.262661 + 0.454942i 0.966948 0.254973i \(-0.0820665\pi\)
−0.704287 + 0.709915i \(0.748733\pi\)
\(108\) 0 0
\(109\) 5.56972e6 9.64704e6i 0.411946 0.713512i −0.583156 0.812360i \(-0.698182\pi\)
0.995103 + 0.0988480i \(0.0315158\pi\)
\(110\) 0 0
\(111\) −4.43520e6 −0.307810
\(112\) 0 0
\(113\) 4.18354e6 0.272753 0.136377 0.990657i \(-0.456454\pi\)
0.136377 + 0.990657i \(0.456454\pi\)
\(114\) 0 0
\(115\) −8.66737e6 + 1.50123e7i −0.531429 + 0.920462i
\(116\) 0 0
\(117\) −4.95077e6 8.57498e6i −0.285773 0.494974i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.60222e6 + 2.77513e6i 0.0822193 + 0.142408i
\(122\) 0 0
\(123\) −4.76787e6 + 8.25819e6i −0.231024 + 0.400145i
\(124\) 0 0
\(125\) −4.47641e7 −2.04996
\(126\) 0 0
\(127\) 3.65300e7 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(128\) 0 0
\(129\) −585812. + 1.01466e6i −0.0240267 + 0.0416155i
\(130\) 0 0
\(131\) −2.54084e7 4.40087e7i −0.987479 1.71036i −0.630353 0.776308i \(-0.717090\pi\)
−0.357126 0.934056i \(-0.616243\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.76266e7 4.78507e7i −0.966405 1.67386i
\(136\) 0 0
\(137\) −1.51976e7 + 2.63230e7i −0.504955 + 0.874608i 0.495028 + 0.868877i \(0.335158\pi\)
−0.999984 + 0.00573133i \(0.998176\pi\)
\(138\) 0 0
\(139\) −2.92052e7 −0.922377 −0.461189 0.887302i \(-0.652577\pi\)
−0.461189 + 0.887302i \(0.652577\pi\)
\(140\) 0 0
\(141\) −1.18323e7 −0.355469
\(142\) 0 0
\(143\) 2.91940e7 5.05655e7i 0.834867 1.44603i
\(144\) 0 0
\(145\) 8.90421e6 + 1.54225e7i 0.242553 + 0.420115i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.85475e7 + 3.21252e7i 0.459339 + 0.795598i 0.998926 0.0463317i \(-0.0147531\pi\)
−0.539588 + 0.841930i \(0.681420\pi\)
\(150\) 0 0
\(151\) −9.11971e6 + 1.57958e7i −0.215557 + 0.373356i −0.953445 0.301568i \(-0.902490\pi\)
0.737888 + 0.674923i \(0.235823\pi\)
\(152\) 0 0
\(153\) 1.83049e7 0.413189
\(154\) 0 0
\(155\) −9.85867e7 −2.12646
\(156\) 0 0
\(157\) −1.06032e7 + 1.83653e7i −0.218670 + 0.378747i −0.954402 0.298526i \(-0.903505\pi\)
0.735732 + 0.677273i \(0.236838\pi\)
\(158\) 0 0
\(159\) 2.34629e7 + 4.06390e7i 0.462905 + 0.801775i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.25476e7 3.90537e7i −0.407797 0.706326i 0.586845 0.809699i \(-0.300370\pi\)
−0.994643 + 0.103373i \(0.967036\pi\)
\(164\) 0 0
\(165\) 3.88252e7 6.72472e7i 0.672852 1.16541i
\(166\) 0 0
\(167\) 6.32823e7 1.05142 0.525708 0.850665i \(-0.323801\pi\)
0.525708 + 0.850665i \(0.323801\pi\)
\(168\) 0 0
\(169\) 1.46624e8 2.33670
\(170\) 0 0
\(171\) 1.25260e7 2.16957e7i 0.191569 0.331808i
\(172\) 0 0
\(173\) 1.67096e7 + 2.89420e7i 0.245361 + 0.424978i 0.962233 0.272227i \(-0.0877601\pi\)
−0.716872 + 0.697205i \(0.754427\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.97630e7 + 5.15510e7i 0.403432 + 0.698764i
\(178\) 0 0
\(179\) 6.49827e7 1.12553e8i 0.846861 1.46681i −0.0371339 0.999310i \(-0.511823\pi\)
0.883995 0.467496i \(-0.154844\pi\)
\(180\) 0 0
\(181\) 1.91607e7 0.240180 0.120090 0.992763i \(-0.461682\pi\)
0.120090 + 0.992763i \(0.461682\pi\)
\(182\) 0 0
\(183\) −1.74776e6 −0.0210816
\(184\) 0 0
\(185\) −2.83981e7 + 4.91869e7i −0.329752 + 0.571147i
\(186\) 0 0
\(187\) 5.39709e7 + 9.34803e7i 0.603551 + 1.04538i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.77182e7 3.06888e7i −0.183994 0.318686i 0.759243 0.650807i \(-0.225569\pi\)
−0.943237 + 0.332121i \(0.892236\pi\)
\(192\) 0 0
\(193\) −9.01695e7 + 1.56178e8i −0.902837 + 1.56376i −0.0790419 + 0.996871i \(0.525186\pi\)
−0.823795 + 0.566888i \(0.808147\pi\)
\(194\) 0 0
\(195\) 2.78445e8 2.68917
\(196\) 0 0
\(197\) −1.39463e8 −1.29965 −0.649826 0.760083i \(-0.725158\pi\)
−0.649826 + 0.760083i \(0.725158\pi\)
\(198\) 0 0
\(199\) −7.31562e7 + 1.26710e8i −0.658060 + 1.13979i 0.323057 + 0.946379i \(0.395289\pi\)
−0.981117 + 0.193414i \(0.938044\pi\)
\(200\) 0 0
\(201\) −5.97948e7 1.03568e8i −0.519370 0.899576i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.10562e7 + 1.05752e8i 0.494984 + 0.857338i
\(206\) 0 0
\(207\) −1.19478e7 + 2.06942e7i −0.0936248 + 0.162163i
\(208\) 0 0
\(209\) 1.47728e8 1.11931
\(210\) 0 0
\(211\) −1.02935e8 −0.754351 −0.377176 0.926142i \(-0.623105\pi\)
−0.377176 + 0.926142i \(0.623105\pi\)
\(212\) 0 0
\(213\) 3.27662e7 5.67527e7i 0.232326 0.402400i
\(214\) 0 0
\(215\) 7.50177e6 + 1.29934e7i 0.0514789 + 0.0891641i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 7.49966e7 + 1.29898e8i 0.482489 + 0.835695i
\(220\) 0 0
\(221\) −1.93533e8 + 3.35210e8i −1.20610 + 2.08903i
\(222\) 0 0
\(223\) −3.26446e8 −1.97126 −0.985632 0.168906i \(-0.945977\pi\)
−0.985632 + 0.168906i \(0.945977\pi\)
\(224\) 0 0
\(225\) −1.15167e8 −0.674044
\(226\) 0 0
\(227\) 4.49769e7 7.79023e7i 0.255211 0.442038i −0.709742 0.704462i \(-0.751188\pi\)
0.964953 + 0.262424i \(0.0845218\pi\)
\(228\) 0 0
\(229\) 5.09646e7 + 8.82734e7i 0.280443 + 0.485742i 0.971494 0.237064i \(-0.0761853\pi\)
−0.691051 + 0.722806i \(0.742852\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.13457e7 + 3.69719e7i 0.110552 + 0.191481i 0.915993 0.401195i \(-0.131405\pi\)
−0.805441 + 0.592676i \(0.798072\pi\)
\(234\) 0 0
\(235\) −7.57606e7 + 1.31221e8i −0.380808 + 0.659579i
\(236\) 0 0
\(237\) 7.78821e7 0.380030
\(238\) 0 0
\(239\) −6.02163e7 −0.285313 −0.142656 0.989772i \(-0.545564\pi\)
−0.142656 + 0.989772i \(0.545564\pi\)
\(240\) 0 0
\(241\) 2.35768e7 4.08362e7i 0.108499 0.187926i −0.806663 0.591011i \(-0.798729\pi\)
0.915162 + 0.403086i \(0.132062\pi\)
\(242\) 0 0
\(243\) −6.70893e7 1.16202e8i −0.299938 0.519508i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.64868e8 + 4.58765e8i 1.11838 + 1.93710i
\(248\) 0 0
\(249\) 1.60626e8 2.78212e8i 0.659352 1.14203i
\(250\) 0 0
\(251\) 1.94014e8 0.774416 0.387208 0.921992i \(-0.373440\pi\)
0.387208 + 0.921992i \(0.373440\pi\)
\(252\) 0 0
\(253\) −1.40909e8 −0.547037
\(254\) 0 0
\(255\) −2.57381e8 + 4.45796e8i −0.972042 + 1.68363i
\(256\) 0 0
\(257\) 3.39371e7 + 5.87809e7i 0.124712 + 0.216008i 0.921620 0.388092i \(-0.126866\pi\)
−0.796908 + 0.604101i \(0.793533\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.22743e7 + 2.12596e7i 0.0427320 + 0.0740140i
\(262\) 0 0
\(263\) −8.05998e7 + 1.39603e8i −0.273205 + 0.473205i −0.969681 0.244375i \(-0.921417\pi\)
0.696476 + 0.717580i \(0.254750\pi\)
\(264\) 0 0
\(265\) 6.00921e8 1.98361
\(266\) 0 0
\(267\) −2.52213e8 −0.810920
\(268\) 0 0
\(269\) 1.32052e8 2.28721e8i 0.413631 0.716429i −0.581653 0.813437i \(-0.697594\pi\)
0.995284 + 0.0970078i \(0.0309272\pi\)
\(270\) 0 0
\(271\) 2.46217e7 + 4.26460e7i 0.0751493 + 0.130162i 0.901151 0.433505i \(-0.142723\pi\)
−0.826002 + 0.563667i \(0.809390\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.39561e8 5.88138e8i −0.984587 1.70535i
\(276\) 0 0
\(277\) 1.42902e8 2.47513e8i 0.403978 0.699711i −0.590224 0.807240i \(-0.700960\pi\)
0.994202 + 0.107529i \(0.0342938\pi\)
\(278\) 0 0
\(279\) −1.35900e8 −0.374631
\(280\) 0 0
\(281\) 5.50944e8 1.48127 0.740637 0.671905i \(-0.234524\pi\)
0.740637 + 0.671905i \(0.234524\pi\)
\(282\) 0 0
\(283\) −1.42073e8 + 2.46077e8i −0.372613 + 0.645385i −0.989967 0.141301i \(-0.954871\pi\)
0.617354 + 0.786686i \(0.288205\pi\)
\(284\) 0 0
\(285\) 3.52249e8 + 6.10113e8i 0.901348 + 1.56118i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.52616e8 2.64338e8i −0.371926 0.644195i
\(290\) 0 0
\(291\) 2.22668e8 3.85673e8i 0.529704 0.917474i
\(292\) 0 0
\(293\) 4.33632e7 0.100713 0.0503564 0.998731i \(-0.483964\pi\)
0.0503564 + 0.998731i \(0.483964\pi\)
\(294\) 0 0
\(295\) 7.62276e8 1.72876
\(296\) 0 0
\(297\) 2.24568e8 3.88964e8i 0.497394 0.861512i
\(298\) 0 0
\(299\) −2.52642e8 4.37588e8i −0.546583 0.946709i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.33826e8 + 2.31794e8i 0.276371 + 0.478688i
\(304\) 0 0
\(305\) −1.11907e7 + 1.93829e7i −0.0225844 + 0.0391173i
\(306\) 0 0
\(307\) −4.07582e8 −0.803954 −0.401977 0.915650i \(-0.631677\pi\)
−0.401977 + 0.915650i \(0.631677\pi\)
\(308\) 0 0
\(309\) 1.61802e8 0.311983
\(310\) 0 0
\(311\) −3.84132e8 + 6.65336e8i −0.724134 + 1.25424i 0.235195 + 0.971948i \(0.424427\pi\)
−0.959329 + 0.282289i \(0.908906\pi\)
\(312\) 0 0
\(313\) −2.15655e8 3.73525e8i −0.397515 0.688517i 0.595903 0.803056i \(-0.296794\pi\)
−0.993419 + 0.114539i \(0.963461\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.89918e7 1.36818e8i −0.139276 0.241232i 0.787947 0.615743i \(-0.211144\pi\)
−0.927223 + 0.374511i \(0.877811\pi\)
\(318\) 0 0
\(319\) −7.23797e7 + 1.25365e8i −0.124839 + 0.216227i
\(320\) 0 0
\(321\) −2.58051e8 −0.435450
\(322\) 0 0
\(323\) −9.79323e8 −1.61703
\(324\) 0 0
\(325\) 1.21763e9 2.10899e9i 1.96754 3.40787i
\(326\) 0 0
\(327\) 2.15909e8 + 3.73965e8i 0.341471 + 0.591445i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.87683e8 8.44692e8i −0.739162 1.28027i −0.952873 0.303370i \(-0.901888\pi\)
0.213711 0.976897i \(-0.431445\pi\)
\(332\) 0 0
\(333\) −3.91461e7 + 6.78030e7i −0.0580943 + 0.100622i
\(334\) 0 0
\(335\) −1.53144e9 −2.22557
\(336\) 0 0
\(337\) −9.07880e8 −1.29218 −0.646091 0.763260i \(-0.723597\pi\)
−0.646091 + 0.763260i \(0.723597\pi\)
\(338\) 0 0
\(339\) −8.10870e7 + 1.40447e8i −0.113045 + 0.195800i
\(340\) 0 0
\(341\) −4.00691e8 6.94017e8i −0.547229 0.947828i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.35989e8 5.81949e8i −0.440512 0.762989i
\(346\) 0 0
\(347\) 2.89860e7 5.02052e7i 0.0372422 0.0645053i −0.846804 0.531906i \(-0.821476\pi\)
0.884046 + 0.467400i \(0.154809\pi\)
\(348\) 0 0
\(349\) −1.33879e9 −1.68587 −0.842935 0.538016i \(-0.819174\pi\)
−0.842935 + 0.538016i \(0.819174\pi\)
\(350\) 0 0
\(351\) 1.61055e9 1.98792
\(352\) 0 0
\(353\) −2.91117e8 + 5.04230e8i −0.352254 + 0.610122i −0.986644 0.162891i \(-0.947918\pi\)
0.634390 + 0.773013i \(0.281251\pi\)
\(354\) 0 0
\(355\) −4.19596e8 7.26762e8i −0.497774 0.862170i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.60217e8 + 2.77505e8i 0.182759 + 0.316548i 0.942819 0.333305i \(-0.108164\pi\)
−0.760060 + 0.649853i \(0.774830\pi\)
\(360\) 0 0
\(361\) −2.23210e8 + 3.86612e8i −0.249712 + 0.432514i
\(362\) 0 0
\(363\) −1.24219e8 −0.136306
\(364\) 0 0
\(365\) 1.92078e9 2.06753
\(366\) 0 0
\(367\) −3.27639e8 + 5.67487e8i −0.345990 + 0.599273i −0.985533 0.169483i \(-0.945790\pi\)
0.639543 + 0.768755i \(0.279124\pi\)
\(368\) 0 0
\(369\) 8.41646e7 + 1.45777e8i 0.0872042 + 0.151042i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.71464e8 + 4.70189e8i 0.270851 + 0.469128i 0.969080 0.246746i \(-0.0793615\pi\)
−0.698229 + 0.715875i \(0.746028\pi\)
\(374\) 0 0
\(375\) 8.67635e8 1.50279e9i 0.849626 1.47159i
\(376\) 0 0
\(377\) −5.19090e8 −0.498940
\(378\) 0 0
\(379\) −1.57480e9 −1.48590 −0.742949 0.669348i \(-0.766573\pi\)
−0.742949 + 0.669348i \(0.766573\pi\)
\(380\) 0 0
\(381\) −7.08038e8 + 1.22636e9i −0.655872 + 1.13600i
\(382\) 0 0
\(383\) 4.44411e8 + 7.69742e8i 0.404193 + 0.700083i 0.994227 0.107295i \(-0.0342190\pi\)
−0.590034 + 0.807378i \(0.700886\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.03410e7 + 1.79112e7i 0.00906933 + 0.0157085i
\(388\) 0 0
\(389\) −6.73363e8 + 1.16630e9i −0.579997 + 1.00458i 0.415482 + 0.909601i \(0.363613\pi\)
−0.995479 + 0.0949829i \(0.969720\pi\)
\(390\) 0 0
\(391\) 9.34116e8 0.790282
\(392\) 0 0
\(393\) 1.96990e9 1.63708
\(394\) 0 0
\(395\) 4.98670e8 8.63722e8i 0.407121 0.705154i
\(396\) 0 0
\(397\) −1.07964e9 1.86998e9i −0.865985 1.49993i −0.866066 0.499930i \(-0.833359\pi\)
8.13447e−5 1.00000i \(-0.499974\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.38083e8 + 1.62481e9i 0.726500 + 1.25834i 0.958354 + 0.285585i \(0.0921877\pi\)
−0.231853 + 0.972751i \(0.574479\pi\)
\(402\) 0 0
\(403\) 1.43683e9 2.48867e9i 1.09355 1.89408i
\(404\) 0 0
\(405\) 1.39897e9 1.04644
\(406\) 0 0
\(407\) −4.61678e8 −0.339437
\(408\) 0 0
\(409\) −1.13724e6 + 1.96976e6i −0.000821906 + 0.00142358i −0.866436 0.499288i \(-0.833595\pi\)
0.865614 + 0.500712i \(0.166928\pi\)
\(410\) 0 0
\(411\) −5.89131e8 1.02041e9i −0.418568 0.724980i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.05694e9 3.56272e9i −1.41271 2.44688i
\(416\) 0 0
\(417\) 5.66067e8 9.80456e8i 0.382289 0.662143i
\(418\) 0 0
\(419\) −2.40944e9 −1.60017 −0.800087 0.599884i \(-0.795213\pi\)
−0.800087 + 0.599884i \(0.795213\pi\)
\(420\) 0 0
\(421\) −1.08307e9 −0.707404 −0.353702 0.935358i \(-0.615077\pi\)
−0.353702 + 0.935358i \(0.615077\pi\)
\(422\) 0 0
\(423\) −1.04434e8 + 1.80886e8i −0.0670891 + 0.116202i
\(424\) 0 0
\(425\) 2.25103e9 + 3.89889e9i 1.42239 + 2.46366i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.13170e9 + 1.96016e9i 0.692038 + 1.19865i
\(430\) 0 0
\(431\) −2.52993e8 + 4.38197e8i −0.152208 + 0.263633i −0.932039 0.362358i \(-0.881972\pi\)
0.779831 + 0.625991i \(0.215305\pi\)
\(432\) 0 0
\(433\) 3.73323e8 0.220992 0.110496 0.993877i \(-0.464756\pi\)
0.110496 + 0.993877i \(0.464756\pi\)
\(434\) 0 0
\(435\) −6.90339e8 −0.402115
\(436\) 0 0
\(437\) 6.39212e8 1.10715e9i 0.366404 0.634630i
\(438\) 0 0
\(439\) 4.44465e6 + 7.69836e6i 0.00250733 + 0.00434283i 0.867276 0.497827i \(-0.165869\pi\)
−0.864769 + 0.502170i \(0.832535\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.12024e8 8.86851e8i −0.279819 0.484661i 0.691521 0.722357i \(-0.256941\pi\)
−0.971340 + 0.237696i \(0.923608\pi\)
\(444\) 0 0
\(445\) −1.61489e9 + 2.79707e9i −0.868726 + 1.50468i
\(446\) 0 0
\(447\) −1.43798e9 −0.761510
\(448\) 0 0
\(449\) 8.32711e8 0.434142 0.217071 0.976156i \(-0.430350\pi\)
0.217071 + 0.976156i \(0.430350\pi\)
\(450\) 0 0
\(451\) −4.96308e8 + 8.59630e8i −0.254761 + 0.441259i
\(452\) 0 0
\(453\) −3.53524e8 6.12321e8i −0.178679 0.309482i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.14391e9 + 1.98130e9i 0.560639 + 0.971055i 0.997441 + 0.0714976i \(0.0227778\pi\)
−0.436802 + 0.899558i \(0.643889\pi\)
\(458\) 0 0
\(459\) −1.48871e9 + 2.57852e9i −0.718565 + 1.24459i
\(460\) 0 0
\(461\) 7.84459e8 0.372921 0.186461 0.982462i \(-0.440298\pi\)
0.186461 + 0.982462i \(0.440298\pi\)
\(462\) 0 0
\(463\) −2.31590e9 −1.08439 −0.542196 0.840252i \(-0.682407\pi\)
−0.542196 + 0.840252i \(0.682407\pi\)
\(464\) 0 0
\(465\) 1.91085e9 3.30968e9i 0.881333 1.52651i
\(466\) 0 0
\(467\) 3.06330e8 + 5.30578e8i 0.139181 + 0.241068i 0.927187 0.374599i \(-0.122220\pi\)
−0.788006 + 0.615668i \(0.788886\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.11031e8 7.11927e8i −0.181260 0.313951i
\(472\) 0 0
\(473\) −6.09796e7 + 1.05620e8i −0.0264954 + 0.0458914i
\(474\) 0 0
\(475\) 6.16147e9 2.63789
\(476\) 0 0
\(477\) 8.28356e8 0.349464
\(478\) 0 0
\(479\) −3.64475e8 + 6.31289e8i −0.151528 + 0.262454i −0.931789 0.362999i \(-0.881753\pi\)
0.780261 + 0.625454i \(0.215086\pi\)
\(480\) 0 0
\(481\) −8.27763e8 1.43373e9i −0.339155 0.587434i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.85144e9 4.93883e9i −1.13493 1.96575i
\(486\) 0 0
\(487\) 4.34192e8 7.52043e8i 0.170346 0.295047i −0.768195 0.640216i \(-0.778845\pi\)
0.938541 + 0.345169i \(0.112178\pi\)
\(488\) 0 0
\(489\) 1.74811e9 0.676063
\(490\) 0 0
\(491\) −3.47503e9 −1.32487 −0.662435 0.749119i \(-0.730477\pi\)
−0.662435 + 0.749119i \(0.730477\pi\)
\(492\) 0 0
\(493\) 4.79821e8 8.31074e8i 0.180349 0.312374i
\(494\) 0 0
\(495\) −6.85360e8 1.18708e9i −0.253980 0.439907i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.84086e9 + 3.18846e9i 0.663236 + 1.14876i 0.979760 + 0.200174i \(0.0641507\pi\)
−0.316524 + 0.948584i \(0.602516\pi\)
\(500\) 0 0
\(501\) −1.22656e9 + 2.12447e9i −0.435770 + 0.754775i
\(502\) 0 0
\(503\) 3.79099e9 1.32820 0.664102 0.747642i \(-0.268814\pi\)
0.664102 + 0.747642i \(0.268814\pi\)
\(504\) 0 0
\(505\) 3.42749e9 1.18429
\(506\) 0 0
\(507\) −2.84193e9 + 4.92236e9i −0.968467 + 1.67743i
\(508\) 0 0
\(509\) 2.04656e9 + 3.54475e9i 0.687880 + 1.19144i 0.972522 + 0.232810i \(0.0747920\pi\)
−0.284642 + 0.958634i \(0.591875\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.03744e9 + 3.52895e9i 0.666306 + 1.15408i
\(514\) 0 0
\(515\) 1.03600e9 1.79441e9i 0.334222 0.578890i
\(516\) 0 0
\(517\) −1.23167e9 −0.391993
\(518\) 0 0
\(519\) −1.29549e9 −0.406770
\(520\) 0 0
\(521\) −8.47729e8 + 1.46831e9i −0.262618 + 0.454868i −0.966937 0.255016i \(-0.917919\pi\)
0.704319 + 0.709884i \(0.251253\pi\)
\(522\) 0 0
\(523\) 7.68571e8 + 1.33120e9i 0.234924 + 0.406901i 0.959251 0.282556i \(-0.0911824\pi\)
−0.724326 + 0.689457i \(0.757849\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.65627e9 + 4.60079e9i 0.790560 + 1.36929i
\(528\) 0 0
\(529\) 1.09271e9 1.89263e9i 0.320929 0.555866i
\(530\) 0 0
\(531\) 1.05078e9 0.304566
\(532\) 0 0
\(533\) −3.55940e9 −1.01820
\(534\) 0 0
\(535\) −1.65227e9 + 2.86182e9i −0.466491 + 0.807986i
\(536\) 0 0
\(537\) 2.51904e9 + 4.36310e9i 0.701980 + 1.21587i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.17255e9 + 3.76296e9i 0.589901 + 1.02174i 0.994245 + 0.107131i \(0.0341664\pi\)
−0.404344 + 0.914607i \(0.632500\pi\)
\(542\) 0 0
\(543\) −3.71380e8 + 6.43249e8i −0.0995449 + 0.172417i
\(544\) 0 0
\(545\) 5.52976e9 1.46325
\(546\) 0 0
\(547\) 2.30195e9 0.601367 0.300683 0.953724i \(-0.402785\pi\)
0.300683 + 0.953724i \(0.402785\pi\)
\(548\) 0 0
\(549\) −1.54262e7 + 2.67189e7i −0.00397882 + 0.00689152i
\(550\) 0 0
\(551\) −6.56678e8 1.13740e9i −0.167233 0.289656i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.10084e9 1.90672e9i −0.273338 0.473435i
\(556\) 0 0
\(557\) −8.55534e8 + 1.48183e9i −0.209770 + 0.363333i −0.951642 0.307209i \(-0.900605\pi\)
0.741872 + 0.670542i \(0.233938\pi\)
\(558\) 0 0
\(559\) −4.37332e8 −0.105894
\(560\) 0 0
\(561\) −4.18434e9 −1.00059
\(562\) 0 0
\(563\) −1.08317e9 + 1.87610e9i −0.255809 + 0.443074i −0.965115 0.261827i \(-0.915675\pi\)
0.709306 + 0.704901i \(0.249008\pi\)
\(564\) 0 0
\(565\) 1.03838e9 + 1.79853e9i 0.242207 + 0.419515i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.38031e9 + 2.39077e9i 0.314112 + 0.544059i 0.979248 0.202664i \(-0.0649598\pi\)
−0.665136 + 0.746722i \(0.731626\pi\)
\(570\) 0 0
\(571\) −3.62954e8 + 6.28654e8i −0.0815877 + 0.141314i −0.903932 0.427676i \(-0.859332\pi\)
0.822344 + 0.568990i \(0.192666\pi\)
\(572\) 0 0
\(573\) 1.37368e9 0.305032
\(574\) 0 0
\(575\) −5.87705e9 −1.28921
\(576\) 0 0
\(577\) 2.68517e9 4.65086e9i 0.581911 1.00790i −0.413341 0.910576i \(-0.635638\pi\)
0.995253 0.0973240i \(-0.0310283\pi\)
\(578\) 0 0
\(579\) −3.49540e9 6.05421e9i −0.748380 1.29623i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.44235e9 + 4.23028e9i 0.510468 + 0.884157i
\(584\) 0 0
\(585\) 2.45762e9 4.25672e9i 0.507539 0.879083i
\(586\) 0 0
\(587\) −7.86145e9 −1.60424 −0.802120 0.597163i \(-0.796295\pi\)
−0.802120 + 0.597163i \(0.796295\pi\)
\(588\) 0 0
\(589\) 7.27069e9 1.46613
\(590\) 0 0
\(591\) 2.70313e9 4.68195e9i 0.538654 0.932976i
\(592\) 0 0
\(593\) −2.72206e9 4.71475e9i −0.536051 0.928468i −0.999112 0.0421412i \(-0.986582\pi\)
0.463060 0.886327i \(-0.346751\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.83588e9 4.91189e9i −0.545479 0.944798i
\(598\) 0 0
\(599\) −3.98704e9 + 6.90575e9i −0.757978 + 1.31286i 0.185902 + 0.982568i \(0.440479\pi\)
−0.943880 + 0.330288i \(0.892854\pi\)
\(600\) 0 0
\(601\) −6.27378e8 −0.117888 −0.0589439 0.998261i \(-0.518773\pi\)
−0.0589439 + 0.998261i \(0.518773\pi\)
\(602\) 0 0
\(603\) −2.11105e9 −0.392092
\(604\) 0 0
\(605\) −7.95362e8 + 1.37761e9i −0.146023 + 0.252919i
\(606\) 0 0
\(607\) −1.89879e9 3.28880e9i −0.344601 0.596866i 0.640680 0.767808i \(-0.278652\pi\)
−0.985281 + 0.170941i \(0.945319\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.20832e9 3.82491e9i −0.391667 0.678387i
\(612\) 0 0
\(613\) −5.30599e9 + 9.19025e9i −0.930369 + 1.61145i −0.147677 + 0.989036i \(0.547180\pi\)
−0.782691 + 0.622410i \(0.786154\pi\)
\(614\) 0 0
\(615\) −4.73366e9 −0.820605
\(616\) 0 0
\(617\) 2.26828e8 0.0388776 0.0194388 0.999811i \(-0.493812\pi\)
0.0194388 + 0.999811i \(0.493812\pi\)
\(618\) 0 0
\(619\) −2.45900e9 + 4.25912e9i −0.416718 + 0.721776i −0.995607 0.0936299i \(-0.970153\pi\)
0.578889 + 0.815406i \(0.303486\pi\)
\(620\) 0 0
\(621\) −1.94339e9 3.36605e9i −0.325641 0.564027i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.53650e9 7.85745e9i −0.743260 1.28736i
\(626\) 0 0
\(627\) −2.86332e9 + 4.95942e9i −0.463910 + 0.803516i
\(628\) 0 0
\(629\) 3.06057e9 0.490371
\(630\) 0 0
\(631\) 6.22228e9 0.985931 0.492966 0.870049i \(-0.335913\pi\)
0.492966 + 0.870049i \(0.335913\pi\)
\(632\) 0 0
\(633\) 1.99512e9 3.45565e9i 0.312648 0.541523i
\(634\) 0 0
\(635\) 9.06697e9 + 1.57044e10i 1.40525 + 2.43397i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.78404e8 1.00182e9i −0.0876957 0.151893i
\(640\) 0 0
\(641\) 1.35677e9 2.35000e9i 0.203472 0.352424i −0.746173 0.665752i \(-0.768111\pi\)
0.949645 + 0.313328i \(0.101444\pi\)
\(642\) 0 0
\(643\) −5.96086e9 −0.884240 −0.442120 0.896956i \(-0.645774\pi\)
−0.442120 + 0.896956i \(0.645774\pi\)
\(644\) 0 0
\(645\) −5.81609e8 −0.0853438
\(646\) 0 0
\(647\) −9.35684e8 + 1.62065e9i −0.135820 + 0.235247i −0.925910 0.377743i \(-0.876700\pi\)
0.790090 + 0.612990i \(0.210034\pi\)
\(648\) 0 0
\(649\) 3.09815e9 + 5.36616e9i 0.444884 + 0.770561i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.34121e9 7.51920e9i −0.610120 1.05676i −0.991220 0.132225i \(-0.957788\pi\)
0.381100 0.924534i \(-0.375545\pi\)
\(654\) 0 0
\(655\) 1.26131e10 2.18464e10i 1.75378 3.03764i
\(656\) 0 0
\(657\) 2.64775e9 0.364249
\(658\) 0 0
\(659\) 1.17028e10 1.59291 0.796457 0.604696i \(-0.206705\pi\)
0.796457 + 0.604696i \(0.206705\pi\)
\(660\) 0 0
\(661\) 2.11762e9 3.66782e9i 0.285195 0.493973i −0.687461 0.726221i \(-0.741275\pi\)
0.972657 + 0.232248i \(0.0746082\pi\)
\(662\) 0 0
\(663\) −7.50228e9 1.29943e10i −0.999760 1.73164i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.26365e8 + 1.08490e9i 0.0817311 + 0.141562i
\(668\) 0 0
\(669\) 6.32731e9 1.09592e10i 0.817010 1.41510i
\(670\) 0 0
\(671\) −1.81932e8 −0.0232477
\(672\) 0 0
\(673\) −1.64366e9 −0.207854 −0.103927 0.994585i \(-0.533141\pi\)
−0.103927 + 0.994585i \(0.533141\pi\)
\(674\) 0 0
\(675\) 9.36633e9 1.62230e10i 1.17221 2.03033i
\(676\) 0 0
\(677\) −5.44190e9 9.42565e9i −0.674048 1.16748i −0.976746 0.214398i \(-0.931221\pi\)
0.302699 0.953086i \(-0.402112\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.74352e9 + 3.01986e9i 0.211549 + 0.366414i
\(682\) 0 0
\(683\) 1.92639e9 3.33660e9i 0.231351 0.400711i −0.726855 0.686791i \(-0.759019\pi\)
0.958206 + 0.286080i \(0.0923522\pi\)
\(684\) 0 0
\(685\) −1.50885e10 −1.79362
\(686\) 0 0
\(687\) −3.95126e9 −0.464930
\(688\) 0 0
\(689\) −8.75800e9 + 1.51693e10i −1.02009 + 1.76684i
\(690\) 0 0
\(691\) 7.77195e9 + 1.34614e10i 0.896100 + 1.55209i 0.832437 + 0.554120i \(0.186945\pi\)
0.0636633 + 0.997971i \(0.479722\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.24892e9 1.25555e10i −0.819080 1.41869i
\(696\) 0 0
\(697\) 3.29013e9 5.69868e9i 0.368043 0.637469i
\(698\) 0 0
\(699\) −1.65493e9 −0.183277
\(700\) 0 0
\(701\) −7.75099e9 −0.849854 −0.424927 0.905228i \(-0.639700\pi\)
−0.424927 + 0.905228i \(0.639700\pi\)
\(702\) 0 0
\(703\) 2.09433e9 3.62749e9i 0.227354 0.393788i
\(704\) 0 0
\(705\) −2.93684e9 5.08676e9i −0.315660 0.546738i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.73320e9 + 9.93020e9i 0.604137 + 1.04640i 0.992187 + 0.124758i \(0.0398154\pi\)
−0.388050 + 0.921638i \(0.626851\pi\)
\(710\) 0 0
\(711\) 6.87405e8 1.19062e9i 0.0717248 0.124231i
\(712\) 0 0
\(713\) −6.93507e9 −0.716535
\(714\) 0 0
\(715\) 2.89845e10 2.96548
\(716\) 0 0
\(717\) 1.16713e9 2.02154e9i 0.118251 0.204816i
\(718\) 0 0
\(719\) 8.19259e9 + 1.41900e10i 0.821997 + 1.42374i 0.904193 + 0.427125i \(0.140473\pi\)
−0.0821957 + 0.996616i \(0.526193\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.13949e8 + 1.58301e9i 0.0899369 + 0.155775i
\(724\) 0 0
\(725\) −3.01882e9 + 5.22875e9i −0.294208 + 0.509583i
\(726\) 0 0
\(727\) 1.66277e10 1.60495 0.802474 0.596687i \(-0.203517\pi\)
0.802474 + 0.596687i \(0.203517\pi\)
\(728\) 0 0
\(729\) 1.13647e10 1.08646
\(730\) 0 0
\(731\) 4.04247e8 7.00177e8i 0.0382769 0.0662975i
\(732\) 0 0
\(733\) −7.28863e9 1.26243e10i −0.683568 1.18398i −0.973884 0.227044i \(-0.927094\pi\)
0.290316 0.956931i \(-0.406240\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.22429e9 1.07808e10i −0.572735 0.992006i
\(738\) 0 0
\(739\) −2.15001e9 + 3.72393e9i −0.195968 + 0.339427i −0.947218 0.320592i \(-0.896118\pi\)
0.751249 + 0.660019i \(0.229452\pi\)
\(740\) 0 0
\(741\) −2.05351e10 −1.85410
\(742\) 0 0
\(743\) −9.14731e9 −0.818150 −0.409075 0.912501i \(-0.634148\pi\)
−0.409075 + 0.912501i \(0.634148\pi\)
\(744\) 0 0
\(745\) −9.20720e9 + 1.59473e10i −0.815794 + 1.41300i
\(746\) 0 0
\(747\) −2.83544e9 4.91113e9i −0.248885 0.431081i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.59368e8 1.48847e9i −0.0740354 0.128233i 0.826631 0.562744i \(-0.190254\pi\)
−0.900666 + 0.434511i \(0.856921\pi\)
\(752\) 0 0
\(753\) −3.76045e9 + 6.51328e9i −0.320964 + 0.555927i
\(754\) 0 0
\(755\) −9.05428e9 −0.765666
\(756\) 0 0
\(757\) −1.58386e10 −1.32703 −0.663517 0.748161i \(-0.730937\pi\)
−0.663517 + 0.748161i \(0.730937\pi\)
\(758\) 0 0
\(759\) 2.73115e9 4.73049e9i 0.226725 0.392699i
\(760\) 0 0
\(761\) −1.64664e9 2.85207e9i −0.135442 0.234592i 0.790324 0.612689i \(-0.209912\pi\)
−0.925766 + 0.378096i \(0.876579\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.54340e9 + 7.86940e9i 0.366915 + 0.635516i
\(766\) 0 0
\(767\) −1.11096e10 + 1.92424e10i −0.889028 + 1.53984i
\(768\) 0 0
\(769\) −1.80581e10 −1.43196 −0.715978 0.698123i \(-0.754019\pi\)
−0.715978 + 0.698123i \(0.754019\pi\)
\(770\) 0 0
\(771\) −2.63113e9 −0.206753
\(772\) 0 0
\(773\) 7.87646e9 1.36424e10i 0.613342 1.06234i −0.377331 0.926079i \(-0.623158\pi\)
0.990673 0.136261i \(-0.0435087\pi\)
\(774\) 0 0
\(775\) −1.67121e10 2.89462e10i −1.28966 2.23375i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.50285e9 7.79916e9i −0.341276 0.591108i
\(780\) 0 0
\(781\) 3.41077e9 5.90763e9i 0.256197 0.443746i
\(782\) 0 0
\(783\) −3.99298e9 −0.297257
\(784\) 0 0
\(785\) −1.05271e10 −0.776724
\(786\) 0 0
\(787\) −5.11120e9 + 8.85285e9i −0.373776 + 0.647398i −0.990143 0.140060i \(-0.955270\pi\)
0.616367 + 0.787459i \(0.288604\pi\)
\(788\) 0 0
\(789\) −3.12443e9 5.41167e9i −0.226465 0.392249i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.26193e8 5.64984e8i −0.0232284 0.0402328i
\(794\) 0 0
\(795\) −1.16473e10 + 2.01737e10i −0.822128 + 1.42397i
\(796\) 0 0
\(797\) 1.44391e10 1.01027 0.505134 0.863041i \(-0.331443\pi\)
0.505134 + 0.863041i \(0.331443\pi\)
\(798\) 0 0
\(799\) 8.16502e9 0.566296
\(800\) 0 0
\(801\) −2.22609e9 + 3.85570e9i −0.153048 + 0.265088i
\(802\) 0 0
\(803\) 7.80672e9 + 1.35216e10i 0.532064 + 0.921562i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.11897e9 + 8.86632e9i 0.342867 + 0.593863i
\(808\) 0 0
\(809\) 5.04427e9 8.73692e9i 0.334949 0.580148i −0.648526 0.761192i \(-0.724614\pi\)
0.983475 + 0.181044i \(0.0579477\pi\)
\(810\) 0 0
\(811\) 1.35981e9 0.0895172 0.0447586 0.998998i \(-0.485748\pi\)
0.0447586 + 0.998998i \(0.485748\pi\)
\(812\) 0 0
\(813\) −1.90890e9 −0.124585
\(814\) 0 0
\(815\) 1.11929e10 1.93867e10i 0.724256 1.25445i
\(816\) 0 0
\(817\) −5.53250e8 9.58256e8i −0.0354931 0.0614758i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.49011e9 + 1.29733e10i 0.472375 + 0.818178i 0.999500 0.0316097i \(-0.0100633\pi\)
−0.527125 + 0.849788i \(0.676730\pi\)
\(822\) 0 0
\(823\) 9.80080e9 1.69755e10i 0.612861 1.06151i −0.377895 0.925849i \(-0.623352\pi\)
0.990756 0.135658i \(-0.0433148\pi\)
\(824\) 0 0
\(825\) 2.63260e10 1.63229
\(826\) 0 0
\(827\) 1.68768e9 0.103758 0.0518789 0.998653i \(-0.483479\pi\)
0.0518789 + 0.998653i \(0.483479\pi\)
\(828\) 0 0
\(829\) 8.22703e8 1.42496e9i 0.0501536 0.0868686i −0.839859 0.542805i \(-0.817362\pi\)
0.890012 + 0.455936i \(0.150696\pi\)
\(830\) 0 0
\(831\) 5.53955e9 + 9.59478e9i 0.334866 + 0.580005i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.57071e10 + 2.72054e10i 0.933667 + 1.61716i
\(836\) 0 0
\(837\) 1.10525e10 1.91435e10i 0.651510 1.12845i
\(838\) 0 0
\(839\) −3.49725e9 −0.204437 −0.102219 0.994762i \(-0.532594\pi\)
−0.102219 + 0.994762i \(0.532594\pi\)
\(840\) 0 0
\(841\) −1.59629e10 −0.925393
\(842\) 0 0
\(843\) −1.06786e10 + 1.84959e10i −0.613929 + 1.06336i
\(844\) 0 0
\(845\) 3.63930e10 + 6.30346e10i 2.07501 + 3.59402i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.50741e9 9.53912e9i −0.308866 0.534972i
\(850\) 0 0
\(851\) −1.99766e9 + 3.46004e9i −0.111114 + 0.192454i
\(852\) 0 0
\(853\) 2.86798e10 1.58218 0.791088 0.611702i \(-0.209515\pi\)
0.791088 + 0.611702i \(0.209515\pi\)
\(854\) 0 0
\(855\) 1.24361e10 0.680461
\(856\) 0 0
\(857\) −1.83667e10 + 3.18120e10i −0.996776 + 1.72647i −0.428901 + 0.903351i \(0.641099\pi\)
−0.567875 + 0.823115i \(0.692234\pi\)
\(858\) 0 0
\(859\) −2.77367e9 4.80413e9i −0.149306 0.258606i 0.781665 0.623699i \(-0.214371\pi\)
−0.930971 + 0.365092i \(0.881037\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.63029e9 4.55579e9i −0.139305 0.241283i 0.787929 0.615766i \(-0.211153\pi\)
−0.927234 + 0.374484i \(0.877820\pi\)
\(864\) 0 0
\(865\) −8.29487e9 + 1.43671e10i −0.435766 + 0.754769i
\(866\) 0 0
\(867\) 1.18322e10 0.616594
\(868\) 0 0
\(869\) 8.10707e9 0.419078
\(870\) 0 0
\(871\) 2.23196e10 3.86587e10i 1.14452 1.98236i
\(872\) 0 0
\(873\) −3.93064e9 6.80807e9i −0.199946 0.346317i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.41580e10 2.45224e10i −0.708767 1.22762i −0.965315 0.261089i \(-0.915918\pi\)
0.256548 0.966532i \(-0.417415\pi\)
\(878\) 0 0
\(879\) −8.40482e8 + 1.45576e9i −0.0417414 + 0.0722983i
\(880\) 0 0
\(881\) −5.58205e9 −0.275029 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(882\) 0 0
\(883\) −2.81316e10 −1.37509 −0.687547 0.726140i \(-0.741312\pi\)
−0.687547 + 0.726140i \(0.741312\pi\)
\(884\) 0 0
\(885\) −1.47747e10 + 2.55906e10i −0.716502 + 1.24102i
\(886\) 0 0
\(887\) 4.96052e6 + 8.59188e6i 0.000238668 + 0.000413386i 0.866145 0.499793i \(-0.166591\pi\)
−0.865906 + 0.500207i \(0.833257\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.68590e9 + 9.84828e9i 0.269295 + 0.466432i
\(892\) 0 0
\(893\) 5.58729e9 9.67746e9i 0.262555 0.454759i
\(894\) 0 0
\(895\) 6.45164e10 3.00808
\(896\) 0 0
\(897\) 1.95872e10 0.906147
\(898\) 0 0
\(899\) −3.56229e9 + 6.17006e9i −0.163520 + 0.283224i
\(900\) 0 0
\(901\) −1.61909e10 2.80435e10i −0.737453 1.27731i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.75580e9 + 8.23730e9i 0.213282 + 0.369415i
\(906\) 0 0
\(907\) 8.05863e8 1.39579e9i 0.0358621 0.0621149i −0.847537 0.530736i \(-0.821916\pi\)
0.883399 + 0.468621i \(0.155249\pi\)
\(908\) 0 0
\(909\) 4.72472e9 0.208642
\(910\) 0 0
\(911\) −2.31768e10 −1.01564 −0.507818 0.861464i \(-0.669548\pi\)
−0.507818 + 0.861464i \(0.669548\pi\)
\(912\) 0 0
\(913\) 1.67202e10 2.89602e10i 0.727100 1.25937i
\(914\) 0 0
\(915\) −4.33805e8 7.51373e8i −0.0187207 0.0324251i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.83205e9 + 1.18335e10i 0.290367 + 0.502930i 0.973896 0.226993i \(-0.0728894\pi\)
−0.683530 + 0.729923i \(0.739556\pi\)
\(920\) 0 0
\(921\) 7.89992e9 1.36831e10i 0.333207 0.577131i
\(922\) 0 0
\(923\) 2.44613e10 1.02394
\(924\) 0 0
\(925\) −1.92558e10 −0.799953
\(926\) 0 0
\(927\) 1.42811e9 2.47355e9i 0.0588818 0.101986i
\(928\) 0 0
\(929\) 1.67141e10 + 2.89497e10i 0.683956 + 1.18465i 0.973764 + 0.227562i \(0.0730753\pi\)
−0.289808 + 0.957085i \(0.593591\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.48908e10 2.57916e10i −0.600250 1.03966i
\(934\) 0 0
\(935\) −2.67918e10 + 4.64048e10i −1.07192 + 1.85662i
\(936\) 0 0
\(937\) 1.04114e10 0.413450 0.206725 0.978399i \(-0.433720\pi\)
0.206725 + 0.978399i \(0.433720\pi\)
\(938\) 0 0
\(939\) 1.67196e10 0.659017
\(940\) 0 0
\(941\) −2.50008e10 + 4.33027e10i −0.978117 + 1.69415i −0.308877 + 0.951102i \(0.599953\pi\)
−0.669240 + 0.743047i \(0.733380\pi\)
\(942\) 0 0
\(943\) 4.29499e9 + 7.43914e9i 0.166790 + 0.288890i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.13649e9 + 1.58249e10i 0.349586 + 0.605501i 0.986176 0.165702i \(-0.0529888\pi\)
−0.636590 + 0.771203i \(0.719656\pi\)
\(948\) 0 0
\(949\) −2.79940e10 + 4.84870e10i −1.06324 + 1.84159i
\(950\) 0 0
\(951\) 6.12420e9 0.230897
\(952\) 0 0
\(953\) −1.24663e10 −0.466565 −0.233282 0.972409i \(-0.574947\pi\)
−0.233282 + 0.972409i \(0.574947\pi\)
\(954\) 0 0
\(955\) 8.79553e9 1.52343e10i 0.326776 0.565993i
\(956\) 0 0
\(957\) −2.80578e9 4.85975e9i −0.103481 0.179235i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5.96436e9 1.03306e10i −0.216786 0.375485i
\(962\) 0 0
\(963\) −2.27762e9 + 3.94495e9i −0.0821844 + 0.142348i
\(964\) 0 0
\(965\) −8.95225e10 −3.20691
\(966\) 0 0
\(967\) 4.12045e9 0.146539 0.0732693 0.997312i \(-0.476657\pi\)
0.0732693 + 0.997312i \(0.476657\pi\)
\(968\) 0 0
\(969\) 1.89816e10 3.28771e10i 0.670193 1.16081i
\(970\) 0 0
\(971\) 6.21190e9 + 1.07593e10i 0.217749 + 0.377153i 0.954120 0.299426i \(-0.0967951\pi\)
−0.736370 + 0.676579i \(0.763462\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.72011e10 + 8.17547e10i 1.63093 + 2.82486i
\(976\) 0 0
\(977\) −2.25652e10 + 3.90840e10i −0.774119 + 1.34081i 0.161170 + 0.986927i \(0.448473\pi\)
−0.935289 + 0.353886i \(0.884860\pi\)
\(978\) 0 0
\(979\) −2.62539e10 −0.894241
\(980\) 0 0
\(981\) 7.62265e9 0.257789
\(982\) 0 0
\(983\) −2.87779e9 + 4.98448e9i −0.0966321 + 0.167372i −0.910289 0.413974i \(-0.864140\pi\)
0.813656 + 0.581346i \(0.197474\pi\)
\(984\) 0 0
\(985\) −3.46156e10 5.99560e10i −1.15410 1.99897i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.27711e8 + 9.14022e8i 0.0173464 + 0.0300448i
\(990\) 0 0
\(991\) 1.82054e10 3.15327e10i 0.594214 1.02921i −0.399443 0.916758i \(-0.630797\pi\)
0.993657 0.112451i \(-0.0358701\pi\)
\(992\) 0 0
\(993\) 3.78098e10 1.22541
\(994\) 0 0
\(995\) −7.26313e10 −2.33745
\(996\) 0 0
\(997\) −5.65165e9 + 9.78895e9i −0.180610 + 0.312826i −0.942089 0.335364i \(-0.891141\pi\)
0.761478 + 0.648190i \(0.224474\pi\)
\(998\) 0 0
\(999\) −6.36738e9 1.10286e10i −0.202060 0.349979i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.8.e.b.165.1 4
7.2 even 3 inner 196.8.e.b.177.1 4
7.3 odd 6 196.8.a.a.1.1 2
7.4 even 3 28.8.a.b.1.2 2
7.5 odd 6 196.8.e.c.177.2 4
7.6 odd 2 196.8.e.c.165.2 4
21.11 odd 6 252.8.a.f.1.2 2
28.11 odd 6 112.8.a.h.1.1 2
56.11 odd 6 448.8.a.q.1.2 2
56.53 even 6 448.8.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.b.1.2 2 7.4 even 3
112.8.a.h.1.1 2 28.11 odd 6
196.8.a.a.1.1 2 7.3 odd 6
196.8.e.b.165.1 4 1.1 even 1 trivial
196.8.e.b.177.1 4 7.2 even 3 inner
196.8.e.c.165.2 4 7.6 odd 2
196.8.e.c.177.2 4 7.5 odd 6
252.8.a.f.1.2 2 21.11 odd 6
448.8.a.o.1.1 2 56.53 even 6
448.8.a.q.1.2 2 56.11 odd 6