Properties

Label 2-280-1.1-c3-0-12
Degree $2$
Conductor $280$
Sign $-1$
Analytic cond. $16.5205$
Root an. cond. $4.06454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.238·3-s − 5·5-s + 7·7-s − 26.9·9-s + 54.5·11-s − 52.2·13-s − 1.19·15-s + 49.8·17-s − 161.·19-s + 1.67·21-s − 119.·23-s + 25·25-s − 12.8·27-s + 49.5·29-s − 164.·31-s + 13.0·33-s − 35·35-s − 216.·37-s − 12.4·39-s − 252.·41-s − 68.7·43-s + 134.·45-s − 84.4·47-s + 49·49-s + 11.9·51-s − 204.·53-s − 272.·55-s + ⋯
L(s)  = 1  + 0.0459·3-s − 0.447·5-s + 0.377·7-s − 0.997·9-s + 1.49·11-s − 1.11·13-s − 0.0205·15-s + 0.711·17-s − 1.94·19-s + 0.0173·21-s − 1.08·23-s + 0.200·25-s − 0.0917·27-s + 0.317·29-s − 0.955·31-s + 0.0687·33-s − 0.169·35-s − 0.963·37-s − 0.0511·39-s − 0.962·41-s − 0.243·43-s + 0.446·45-s − 0.261·47-s + 0.142·49-s + 0.0327·51-s − 0.530·53-s − 0.669·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(280\)    =    \(2^{3} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(16.5205\)
Root analytic conductor: \(4.06454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 280,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 - 7T \)
good3 \( 1 - 0.238T + 27T^{2} \)
11 \( 1 - 54.5T + 1.33e3T^{2} \)
13 \( 1 + 52.2T + 2.19e3T^{2} \)
17 \( 1 - 49.8T + 4.91e3T^{2} \)
19 \( 1 + 161.T + 6.85e3T^{2} \)
23 \( 1 + 119.T + 1.21e4T^{2} \)
29 \( 1 - 49.5T + 2.43e4T^{2} \)
31 \( 1 + 164.T + 2.97e4T^{2} \)
37 \( 1 + 216.T + 5.06e4T^{2} \)
41 \( 1 + 252.T + 6.89e4T^{2} \)
43 \( 1 + 68.7T + 7.95e4T^{2} \)
47 \( 1 + 84.4T + 1.03e5T^{2} \)
53 \( 1 + 204.T + 1.48e5T^{2} \)
59 \( 1 + 351.T + 2.05e5T^{2} \)
61 \( 1 - 552.T + 2.26e5T^{2} \)
67 \( 1 + 178.T + 3.00e5T^{2} \)
71 \( 1 + 1.03e3T + 3.57e5T^{2} \)
73 \( 1 - 415.T + 3.89e5T^{2} \)
79 \( 1 - 931.T + 4.93e5T^{2} \)
83 \( 1 + 223.T + 5.71e5T^{2} \)
89 \( 1 + 1.48e3T + 7.04e5T^{2} \)
97 \( 1 - 1.70e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09400285730912064510012968337, −10.01365456843684949093161602689, −8.877871900178125958028739038189, −8.185163510452554323244366706898, −6.99253173304800319917357416377, −5.95824328288277188531800759001, −4.64392173634943651412979403653, −3.53677550713164465680795550794, −1.95886763850354033845189511793, 0, 1.95886763850354033845189511793, 3.53677550713164465680795550794, 4.64392173634943651412979403653, 5.95824328288277188531800759001, 6.99253173304800319917357416377, 8.185163510452554323244366706898, 8.877871900178125958028739038189, 10.01365456843684949093161602689, 11.09400285730912064510012968337

Graph of the $Z$-function along the critical line