Properties

Label 280.4.a.f
Level $280$
Weight $4$
Character orbit 280.a
Self dual yes
Analytic conductor $16.521$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,4,Mod(1,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.5205348016\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.11045.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 31x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{3} - 5 q^{5} + 7 q^{7} + (\beta_{2} - 7 \beta_1 + 8) q^{9} + ( - 3 \beta_{2} - \beta_1 - 1) q^{11} + (2 \beta_{2} - 7 \beta_1 + 2) q^{13} + ( - 5 \beta_1 + 10) q^{15} + ( - 4 \beta_{2} - 5 \beta_1 - 16) q^{17}+ \cdots + (60 \beta_{2} + 58 \beta_1 - 444) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{3} - 15 q^{5} + 21 q^{7} + 25 q^{9} - 6 q^{11} + 8 q^{13} + 30 q^{15} - 52 q^{17} - 152 q^{19} - 42 q^{21} - 48 q^{23} + 75 q^{25} - 546 q^{27} - 468 q^{29} - 268 q^{31} - 82 q^{33} - 105 q^{35}+ \cdots - 1272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 31x - 54 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3\nu - 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\nu^{2} + 10\nu + 39 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + 10\beta _1 + 83 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.31508
−3.44861
6.76369
0 −9.69516 0 −5.00000 0 7.00000 0 66.9961 0
1.2 0 0.238730 0 −5.00000 0 7.00000 0 −26.9430 0
1.3 0 3.45643 0 −5.00000 0 7.00000 0 −15.0531 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.4.a.f 3
4.b odd 2 1 560.4.a.w 3
5.b even 2 1 1400.4.a.m 3
5.c odd 4 2 1400.4.g.l 6
7.b odd 2 1 1960.4.a.r 3
8.b even 2 1 2240.4.a.bz 3
8.d odd 2 1 2240.4.a.br 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.a.f 3 1.a even 1 1 trivial
560.4.a.w 3 4.b odd 2 1
1400.4.a.m 3 5.b even 2 1
1400.4.g.l 6 5.c odd 4 2
1960.4.a.r 3 7.b odd 2 1
2240.4.a.br 3 8.d odd 2 1
2240.4.a.bz 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 6T_{3}^{2} - 35T_{3} + 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(280))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( (T - 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 6 T^{2} + \cdots - 24620 \) Copy content Toggle raw display
$13$ \( T^{3} - 8 T^{2} + \cdots - 20410 \) Copy content Toggle raw display
$17$ \( T^{3} + 52 T^{2} + \cdots + 10134 \) Copy content Toggle raw display
$19$ \( T^{3} + 152 T^{2} + \cdots - 2087776 \) Copy content Toggle raw display
$23$ \( T^{3} + 48 T^{2} + \cdots - 1469824 \) Copy content Toggle raw display
$29$ \( T^{3} + 468 T^{2} + \cdots - 3237134 \) Copy content Toggle raw display
$31$ \( T^{3} + 268 T^{2} + \cdots - 921984 \) Copy content Toggle raw display
$37$ \( T^{3} - 262 T^{2} + \cdots + 11050616 \) Copy content Toggle raw display
$41$ \( T^{3} + 74 T^{2} + \cdots - 3221920 \) Copy content Toggle raw display
$43$ \( T^{3} + 692 T^{2} + \cdots + 3560240 \) Copy content Toggle raw display
$47$ \( T^{3} + 774 T^{2} + \cdots + 8510472 \) Copy content Toggle raw display
$53$ \( T^{3} - 62 T^{2} + \cdots - 5800160 \) Copy content Toggle raw display
$59$ \( T^{3} + 1088 T^{2} + \cdots + 19501056 \) Copy content Toggle raw display
$61$ \( T^{3} - 174 T^{2} + \cdots + 187440544 \) Copy content Toggle raw display
$67$ \( T^{3} - 212 T^{2} + \cdots - 41574080 \) Copy content Toggle raw display
$71$ \( T^{3} + 1056 T^{2} + \cdots - 270950400 \) Copy content Toggle raw display
$73$ \( T^{3} + 194 T^{2} + \cdots + 80306840 \) Copy content Toggle raw display
$79$ \( T^{3} - 362 T^{2} + \cdots + 362644136 \) Copy content Toggle raw display
$83$ \( T^{3} + 1696 T^{2} + \cdots + 90044928 \) Copy content Toggle raw display
$89$ \( T^{3} - 158 T^{2} + \cdots + 860463840 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 2380431942 \) Copy content Toggle raw display
show more
show less