L(s) = 1 | − 7·3-s + 5·5-s + 7·7-s + 27·9-s − 58·11-s + 164·13-s − 35·15-s − 50·17-s − 64·19-s − 49·21-s + 111·23-s − 224·27-s + 206·29-s + 130·31-s + 406·33-s + 35·35-s − 376·37-s − 1.14e3·39-s − 614·41-s − 394·43-s + 135·45-s − 120·47-s − 294·49-s + 350·51-s + 508·53-s − 290·55-s + 448·57-s + ⋯ |
L(s) = 1 | − 1.34·3-s + 0.447·5-s + 0.377·7-s + 9-s − 1.58·11-s + 3.49·13-s − 0.602·15-s − 0.713·17-s − 0.772·19-s − 0.509·21-s + 1.00·23-s − 1.59·27-s + 1.31·29-s + 0.753·31-s + 2.14·33-s + 0.169·35-s − 1.67·37-s − 4.71·39-s − 2.33·41-s − 1.39·43-s + 0.447·45-s − 0.372·47-s − 6/7·49-s + 0.960·51-s + 1.31·53-s − 0.710·55-s + 1.04·57-s + ⋯ |
Λ(s)=(=(78400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(78400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
78400
= 26⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
272.928 |
Root analytic conductor: |
4.06454 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 78400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.398215353 |
L(21) |
≈ |
1.398215353 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−pT+p2T2 |
| 7 | C2 | 1−pT+p3T2 |
good | 3 | C22 | 1+7T+22T2+7p3T3+p6T4 |
| 11 | C22 | 1+58T+2033T2+58p3T3+p6T4 |
| 13 | C2 | (1−82T+p3T2)2 |
| 17 | C22 | 1+50T−2413T2+50p3T3+p6T4 |
| 19 | C22 | 1+64T−2763T2+64p3T3+p6T4 |
| 23 | C22 | 1−111T+154T2−111p3T3+p6T4 |
| 29 | C2 | (1−103T+p3T2)2 |
| 31 | C22 | 1−130T−12891T2−130p3T3+p6T4 |
| 37 | C22 | 1+376T+90723T2+376p3T3+p6T4 |
| 41 | C2 | (1+307T+p3T2)2 |
| 43 | C2 | (1+197T+p3T2)2 |
| 47 | C22 | 1+120T−89423T2+120p3T3+p6T4 |
| 53 | C22 | 1−508T+109187T2−508p3T3+p6T4 |
| 59 | C22 | 1+600T+154621T2+600p3T3+p6T4 |
| 61 | C22 | 1−165T−199756T2−165p3T3+p6T4 |
| 67 | C22 | 1−633T+99926T2−633p3T3+p6T4 |
| 71 | C2 | (1−840T+p3T2)2 |
| 73 | C22 | 1+606T−21781T2+606p3T3+p6T4 |
| 79 | C22 | 1−1316T+1238817T2−1316p3T3+p6T4 |
| 83 | C2 | (1−61T+p3T2)2 |
| 89 | C22 | 1−187T−670000T2−187p3T3+p6T4 |
| 97 | C2 | (1−406T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59560752761809697768659222039, −10.99964615122909534875762087810, −10.89034930035001721152852817513, −10.36271321260575420694687390688, −10.18100299253983700917528019161, −9.248393436704561328086756911518, −8.612740752605213903175287420079, −8.284062543157981878091260833824, −8.080120498539775468298745083400, −6.76478147636842431553882527762, −6.73044293522881481754444403738, −6.15926143775471184016708559026, −5.67745049379818177983647645963, −4.95362632355586402340829423380, −4.89795716314073745381313288440, −3.69857540536067335720712030590, −3.36276871556921022259308770403, −2.08338995306755589223515431297, −1.41318428586734288907352820178, −0.52185977981391718091680818150,
0.52185977981391718091680818150, 1.41318428586734288907352820178, 2.08338995306755589223515431297, 3.36276871556921022259308770403, 3.69857540536067335720712030590, 4.89795716314073745381313288440, 4.95362632355586402340829423380, 5.67745049379818177983647645963, 6.15926143775471184016708559026, 6.73044293522881481754444403738, 6.76478147636842431553882527762, 8.080120498539775468298745083400, 8.284062543157981878091260833824, 8.612740752605213903175287420079, 9.248393436704561328086756911518, 10.18100299253983700917528019161, 10.36271321260575420694687390688, 10.89034930035001721152852817513, 10.99964615122909534875762087810, 11.59560752761809697768659222039