Properties

Label 280.4.q.a
Level $280$
Weight $4$
Character orbit 280.q
Analytic conductor $16.521$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,4,Mod(81,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 280.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5205348016\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (7 \zeta_{6} - 7) q^{3} + 5 \zeta_{6} q^{5} + (21 \zeta_{6} - 7) q^{7} - 22 \zeta_{6} q^{9} + (58 \zeta_{6} - 58) q^{11} + 82 q^{13} - 35 q^{15} + (50 \zeta_{6} - 50) q^{17} - 64 \zeta_{6} q^{19} + ( - 49 \zeta_{6} - 98) q^{21} + \cdots + 1276 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{3} + 5 q^{5} + 7 q^{7} - 22 q^{9} - 58 q^{11} + 164 q^{13} - 70 q^{15} - 50 q^{17} - 64 q^{19} - 245 q^{21} + 111 q^{23} - 25 q^{25} - 70 q^{27} + 206 q^{29} + 130 q^{31} - 406 q^{33} - 140 q^{35}+ \cdots + 2552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −3.50000 + 6.06218i 0 2.50000 + 4.33013i 0 3.50000 + 18.1865i 0 −11.0000 19.0526i 0
121.1 0 −3.50000 6.06218i 0 2.50000 4.33013i 0 3.50000 18.1865i 0 −11.0000 + 19.0526i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.4.q.a 2
4.b odd 2 1 560.4.q.f 2
7.c even 3 1 inner 280.4.q.a 2
7.c even 3 1 1960.4.a.i 1
7.d odd 6 1 1960.4.a.c 1
28.g odd 6 1 560.4.q.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.q.a 2 1.a even 1 1 trivial
280.4.q.a 2 7.c even 3 1 inner
560.4.q.f 2 4.b odd 2 1
560.4.q.f 2 28.g odd 6 1
1960.4.a.c 1 7.d odd 6 1
1960.4.a.i 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 7T_{3} + 49 \) acting on \(S_{4}^{\mathrm{new}}(280, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 7T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} + 58T + 3364 \) Copy content Toggle raw display
$13$ \( (T - 82)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 50T + 2500 \) Copy content Toggle raw display
$19$ \( T^{2} + 64T + 4096 \) Copy content Toggle raw display
$23$ \( T^{2} - 111T + 12321 \) Copy content Toggle raw display
$29$ \( (T - 103)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 130T + 16900 \) Copy content Toggle raw display
$37$ \( T^{2} + 376T + 141376 \) Copy content Toggle raw display
$41$ \( (T + 307)^{2} \) Copy content Toggle raw display
$43$ \( (T + 197)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 120T + 14400 \) Copy content Toggle raw display
$53$ \( T^{2} - 508T + 258064 \) Copy content Toggle raw display
$59$ \( T^{2} + 600T + 360000 \) Copy content Toggle raw display
$61$ \( T^{2} - 165T + 27225 \) Copy content Toggle raw display
$67$ \( T^{2} - 633T + 400689 \) Copy content Toggle raw display
$71$ \( (T - 840)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 606T + 367236 \) Copy content Toggle raw display
$79$ \( T^{2} - 1316 T + 1731856 \) Copy content Toggle raw display
$83$ \( (T - 61)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 187T + 34969 \) Copy content Toggle raw display
$97$ \( (T - 406)^{2} \) Copy content Toggle raw display
show more
show less