Properties

Label 280.4.q.a
Level 280280
Weight 44
Character orbit 280.q
Analytic conductor 16.52116.521
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,4,Mod(81,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 280=2357 280 = 2^{3} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 280.q (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.520534801616.5205348016
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(7ζ67)q3+5ζ6q5+(21ζ67)q722ζ6q9+(58ζ658)q11+82q1335q15+(50ζ650)q1764ζ6q19+(49ζ698)q21++1276q99+O(q100) q + (7 \zeta_{6} - 7) q^{3} + 5 \zeta_{6} q^{5} + (21 \zeta_{6} - 7) q^{7} - 22 \zeta_{6} q^{9} + (58 \zeta_{6} - 58) q^{11} + 82 q^{13} - 35 q^{15} + (50 \zeta_{6} - 50) q^{17} - 64 \zeta_{6} q^{19} + ( - 49 \zeta_{6} - 98) q^{21} + \cdots + 1276 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q7q3+5q5+7q722q958q11+164q1370q1550q1764q19245q21+111q2325q2570q27+206q29+130q31406q33140q35++2552q99+O(q100) 2 q - 7 q^{3} + 5 q^{5} + 7 q^{7} - 22 q^{9} - 58 q^{11} + 164 q^{13} - 70 q^{15} - 50 q^{17} - 64 q^{19} - 245 q^{21} + 111 q^{23} - 25 q^{25} - 70 q^{27} + 206 q^{29} + 130 q^{31} - 406 q^{33} - 140 q^{35}+ \cdots + 2552 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/280Z)×\left(\mathbb{Z}/280\mathbb{Z}\right)^\times.

nn 5757 7171 141141 241241
χ(n)\chi(n) 11 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −3.50000 + 6.06218i 0 2.50000 + 4.33013i 0 3.50000 + 18.1865i 0 −11.0000 19.0526i 0
121.1 0 −3.50000 6.06218i 0 2.50000 4.33013i 0 3.50000 18.1865i 0 −11.0000 + 19.0526i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.4.q.a 2
4.b odd 2 1 560.4.q.f 2
7.c even 3 1 inner 280.4.q.a 2
7.c even 3 1 1960.4.a.i 1
7.d odd 6 1 1960.4.a.c 1
28.g odd 6 1 560.4.q.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.q.a 2 1.a even 1 1 trivial
280.4.q.a 2 7.c even 3 1 inner
560.4.q.f 2 4.b odd 2 1
560.4.q.f 2 28.g odd 6 1
1960.4.a.c 1 7.d odd 6 1
1960.4.a.i 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+7T3+49 T_{3}^{2} + 7T_{3} + 49 acting on S4new(280,[χ])S_{4}^{\mathrm{new}}(280, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
55 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
77 T27T+343 T^{2} - 7T + 343 Copy content Toggle raw display
1111 T2+58T+3364 T^{2} + 58T + 3364 Copy content Toggle raw display
1313 (T82)2 (T - 82)^{2} Copy content Toggle raw display
1717 T2+50T+2500 T^{2} + 50T + 2500 Copy content Toggle raw display
1919 T2+64T+4096 T^{2} + 64T + 4096 Copy content Toggle raw display
2323 T2111T+12321 T^{2} - 111T + 12321 Copy content Toggle raw display
2929 (T103)2 (T - 103)^{2} Copy content Toggle raw display
3131 T2130T+16900 T^{2} - 130T + 16900 Copy content Toggle raw display
3737 T2+376T+141376 T^{2} + 376T + 141376 Copy content Toggle raw display
4141 (T+307)2 (T + 307)^{2} Copy content Toggle raw display
4343 (T+197)2 (T + 197)^{2} Copy content Toggle raw display
4747 T2+120T+14400 T^{2} + 120T + 14400 Copy content Toggle raw display
5353 T2508T+258064 T^{2} - 508T + 258064 Copy content Toggle raw display
5959 T2+600T+360000 T^{2} + 600T + 360000 Copy content Toggle raw display
6161 T2165T+27225 T^{2} - 165T + 27225 Copy content Toggle raw display
6767 T2633T+400689 T^{2} - 633T + 400689 Copy content Toggle raw display
7171 (T840)2 (T - 840)^{2} Copy content Toggle raw display
7373 T2+606T+367236 T^{2} + 606T + 367236 Copy content Toggle raw display
7979 T21316T+1731856 T^{2} - 1316 T + 1731856 Copy content Toggle raw display
8383 (T61)2 (T - 61)^{2} Copy content Toggle raw display
8989 T2187T+34969 T^{2} - 187T + 34969 Copy content Toggle raw display
9797 (T406)2 (T - 406)^{2} Copy content Toggle raw display
show more
show less