L(s) = 1 | + (−3.5 + 6.06i)3-s + (2.5 + 4.33i)5-s + (3.5 + 18.1i)7-s + (−11 − 19.0i)9-s + (−29 + 50.2i)11-s + 82·13-s − 35·15-s + (−25 + 43.3i)17-s + (−32 − 55.4i)19-s + (−122.5 − 42.4i)21-s + (55.5 + 96.1i)23-s + (−12.5 + 21.6i)25-s − 35.0·27-s + 103·29-s + (65 − 112. i)31-s + ⋯ |
L(s) = 1 | + (−0.673 + 1.16i)3-s + (0.223 + 0.387i)5-s + (0.188 + 0.981i)7-s + (−0.407 − 0.705i)9-s + (−0.794 + 1.37i)11-s + 1.74·13-s − 0.602·15-s + (−0.356 + 0.617i)17-s + (−0.386 − 0.669i)19-s + (−1.27 − 0.440i)21-s + (0.503 + 0.871i)23-s + (−0.100 + 0.173i)25-s − 0.249·27-s + 0.659·29-s + (0.376 − 0.652i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.182461565\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.182461565\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (-3.5 - 18.1i)T \) |
good | 3 | \( 1 + (3.5 - 6.06i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (29 - 50.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 82T + 2.19e3T^{2} \) |
| 17 | \( 1 + (25 - 43.3i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (32 + 55.4i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-55.5 - 96.1i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 103T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-65 + 112. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (188 + 325. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 307T + 6.89e4T^{2} \) |
| 43 | \( 1 + 197T + 7.95e4T^{2} \) |
| 47 | \( 1 + (60 + 103. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-254 + 439. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (300 - 519. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-82.5 - 142. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-316.5 + 548. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 840T + 3.57e5T^{2} \) |
| 73 | \( 1 + (303 - 524. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-658 - 1.13e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 61T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-93.5 - 161. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 406T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59560752761809697768659222039, −10.89034930035001721152852817513, −10.18100299253983700917528019161, −9.248393436704561328086756911518, −8.284062543157981878091260833824, −6.76478147636842431553882527762, −5.67745049379818177983647645963, −4.89795716314073745381313288440, −3.69857540536067335720712030590, −2.08338995306755589223515431297,
0.52185977981391718091680818150, 1.41318428586734288907352820178, 3.36276871556921022259308770403, 4.95362632355586402340829423380, 6.15926143775471184016708559026, 6.73044293522881481754444403738, 8.080120498539775468298745083400, 8.612740752605213903175287420079, 10.36271321260575420694687390688, 10.99964615122909534875762087810