L(s) = 1 | + (−3.5 + 6.06i)3-s + (2.5 + 4.33i)5-s + (3.5 + 18.1i)7-s + (−11 − 19.0i)9-s + (−29 + 50.2i)11-s + 82·13-s − 35·15-s + (−25 + 43.3i)17-s + (−32 − 55.4i)19-s + (−122.5 − 42.4i)21-s + (55.5 + 96.1i)23-s + (−12.5 + 21.6i)25-s − 35.0·27-s + 103·29-s + (65 − 112. i)31-s + ⋯ |
L(s) = 1 | + (−0.673 + 1.16i)3-s + (0.223 + 0.387i)5-s + (0.188 + 0.981i)7-s + (−0.407 − 0.705i)9-s + (−0.794 + 1.37i)11-s + 1.74·13-s − 0.602·15-s + (−0.356 + 0.617i)17-s + (−0.386 − 0.669i)19-s + (−1.27 − 0.440i)21-s + (0.503 + 0.871i)23-s + (−0.100 + 0.173i)25-s − 0.249·27-s + 0.659·29-s + (0.376 − 0.652i)31-s + ⋯ |
Λ(s)=(=(280s/2ΓC(s)L(s)(−0.991+0.126i)Λ(4−s)
Λ(s)=(=(280s/2ΓC(s+3/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
280
= 23⋅5⋅7
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
16.5205 |
Root analytic conductor: |
4.06454 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ280(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 280, ( :3/2), −0.991+0.126i)
|
Particular Values
L(2) |
≈ |
1.182461565 |
L(21) |
≈ |
1.182461565 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2.5−4.33i)T |
| 7 | 1+(−3.5−18.1i)T |
good | 3 | 1+(3.5−6.06i)T+(−13.5−23.3i)T2 |
| 11 | 1+(29−50.2i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−82T+2.19e3T2 |
| 17 | 1+(25−43.3i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(32+55.4i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−55.5−96.1i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1−103T+2.43e4T2 |
| 31 | 1+(−65+112.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(188+325.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+307T+6.89e4T2 |
| 43 | 1+197T+7.95e4T2 |
| 47 | 1+(60+103.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−254+439.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(300−519.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−82.5−142.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−316.5+548.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−840T+3.57e5T2 |
| 73 | 1+(303−524.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−658−1.13e3i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−61T+5.71e5T2 |
| 89 | 1+(−93.5−161.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−406T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59560752761809697768659222039, −10.89034930035001721152852817513, −10.18100299253983700917528019161, −9.248393436704561328086756911518, −8.284062543157981878091260833824, −6.76478147636842431553882527762, −5.67745049379818177983647645963, −4.89795716314073745381313288440, −3.69857540536067335720712030590, −2.08338995306755589223515431297,
0.52185977981391718091680818150, 1.41318428586734288907352820178, 3.36276871556921022259308770403, 4.95362632355586402340829423380, 6.15926143775471184016708559026, 6.73044293522881481754444403738, 8.080120498539775468298745083400, 8.612740752605213903175287420079, 10.36271321260575420694687390688, 10.99964615122909534875762087810