L(s) = 1 | + (1.23 − 2.14i)3-s + (2.5 + 4.33i)5-s + (17.8 + 5.09i)7-s + (10.4 + 18.0i)9-s + (−26.0 + 45.0i)11-s − 53.4·13-s + 12.3·15-s + (−2.44 + 4.23i)17-s + (−51.1 − 88.5i)19-s + (32.9 − 31.8i)21-s + (105. + 183. i)23-s + (−12.5 + 21.6i)25-s + 118.·27-s + 0.173·29-s + (−123. + 214. i)31-s + ⋯ |
L(s) = 1 | + (0.238 − 0.412i)3-s + (0.223 + 0.387i)5-s + (0.961 + 0.275i)7-s + (0.386 + 0.669i)9-s + (−0.712 + 1.23i)11-s − 1.13·13-s + 0.213·15-s + (−0.0349 + 0.0604i)17-s + (−0.617 − 1.06i)19-s + (0.342 − 0.331i)21-s + (0.960 + 1.66i)23-s + (−0.100 + 0.173i)25-s + 0.844·27-s + 0.00110·29-s + (−0.716 + 1.24i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.910321278\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.910321278\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (-17.8 - 5.09i)T \) |
good | 3 | \( 1 + (-1.23 + 2.14i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (26.0 - 45.0i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 53.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (2.44 - 4.23i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (51.1 + 88.5i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-105. - 183. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 0.173T + 2.43e4T^{2} \) |
| 31 | \( 1 + (123. - 214. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-41.5 - 71.9i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 210.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 89.9T + 7.95e4T^{2} \) |
| 47 | \( 1 + (18.8 + 32.6i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-356. + 618. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (119. - 206. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-130. - 226. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (423. - 733. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 686.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-155. + 269. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (254. + 440. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 633.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (479. + 829. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 962.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57121845565739190350867515996, −10.66680205100925353795517249525, −9.790086460421892904833060610456, −8.655520748352436388146515985180, −7.31406671718290455432732494897, −7.26600110996367685285918340619, −5.30232263782197121507469567077, −4.65094116421294233764464987949, −2.62529506315183127638918697631, −1.75782551795271121432517834976,
0.70723576501709867875047204968, 2.46774947836751756196771241530, 4.00796900132496428401062543852, 4.97120053413469239288410663248, 6.11088273551592193558113754276, 7.51962968562301655086111691644, 8.416891860037571849467406987237, 9.281239458006898871817407887919, 10.36839545615632263982904661258, 11.04022889591232232689563012031