L(s) = 1 | + (1.23 − 2.14i)3-s + (2.5 + 4.33i)5-s + (17.8 + 5.09i)7-s + (10.4 + 18.0i)9-s + (−26.0 + 45.0i)11-s − 53.4·13-s + 12.3·15-s + (−2.44 + 4.23i)17-s + (−51.1 − 88.5i)19-s + (32.9 − 31.8i)21-s + (105. + 183. i)23-s + (−12.5 + 21.6i)25-s + 118.·27-s + 0.173·29-s + (−123. + 214. i)31-s + ⋯ |
L(s) = 1 | + (0.238 − 0.412i)3-s + (0.223 + 0.387i)5-s + (0.961 + 0.275i)7-s + (0.386 + 0.669i)9-s + (−0.712 + 1.23i)11-s − 1.13·13-s + 0.213·15-s + (−0.0349 + 0.0604i)17-s + (−0.617 − 1.06i)19-s + (0.342 − 0.331i)21-s + (0.960 + 1.66i)23-s + (−0.100 + 0.173i)25-s + 0.844·27-s + 0.00110·29-s + (−0.716 + 1.24i)31-s + ⋯ |
Λ(s)=(=(280s/2ΓC(s)L(s)(0.335−0.942i)Λ(4−s)
Λ(s)=(=(280s/2ΓC(s+3/2)L(s)(0.335−0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
280
= 23⋅5⋅7
|
Sign: |
0.335−0.942i
|
Analytic conductor: |
16.5205 |
Root analytic conductor: |
4.06454 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ280(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 280, ( :3/2), 0.335−0.942i)
|
Particular Values
L(2) |
≈ |
1.910321278 |
L(21) |
≈ |
1.910321278 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2.5−4.33i)T |
| 7 | 1+(−17.8−5.09i)T |
good | 3 | 1+(−1.23+2.14i)T+(−13.5−23.3i)T2 |
| 11 | 1+(26.0−45.0i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+53.4T+2.19e3T2 |
| 17 | 1+(2.44−4.23i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(51.1+88.5i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−105.−183.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1−0.173T+2.43e4T2 |
| 31 | 1+(123.−214.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−41.5−71.9i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−210.T+6.89e4T2 |
| 43 | 1−89.9T+7.95e4T2 |
| 47 | 1+(18.8+32.6i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−356.+618.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(119.−206.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−130.−226.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(423.−733.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−686.T+3.57e5T2 |
| 73 | 1+(−155.+269.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(254.+440.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+633.T+5.71e5T2 |
| 89 | 1+(479.+829.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−962.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.57121845565739190350867515996, −10.66680205100925353795517249525, −9.790086460421892904833060610456, −8.655520748352436388146515985180, −7.31406671718290455432732494897, −7.26600110996367685285918340619, −5.30232263782197121507469567077, −4.65094116421294233764464987949, −2.62529506315183127638918697631, −1.75782551795271121432517834976,
0.70723576501709867875047204968, 2.46774947836751756196771241530, 4.00796900132496428401062543852, 4.97120053413469239288410663248, 6.11088273551592193558113754276, 7.51962968562301655086111691644, 8.416891860037571849467406987237, 9.281239458006898871817407887919, 10.36839545615632263982904661258, 11.04022889591232232689563012031