[N,k,chi] = [280,4,Mod(81,280)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(280, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("280.81");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 280 Z ) × \left(\mathbb{Z}/280\mathbb{Z}\right)^\times ( Z / 2 8 0 Z ) × .
n n n
57 57 5 7
71 71 7 1
141 141 1 4 1
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− β 3 -\beta_{3} − β 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 12 + 7 T 3 11 + 125 T 3 10 + 136 T 3 9 + 6341 T 3 8 + 4105 T 3 7 + ⋯ + 158608836 T_{3}^{12} + 7 T_{3}^{11} + 125 T_{3}^{10} + 136 T_{3}^{9} + 6341 T_{3}^{8} + 4105 T_{3}^{7} + \cdots + 158608836 T 3 1 2 + 7 T 3 1 1 + 1 2 5 T 3 1 0 + 1 3 6 T 3 9 + 6 3 4 1 T 3 8 + 4 1 0 5 T 3 7 + ⋯ + 1 5 8 6 0 8 8 3 6
T3^12 + 7*T3^11 + 125*T3^10 + 136*T3^9 + 6341*T3^8 + 4105*T3^7 + 196315*T3^6 - 141804*T3^5 + 3369747*T3^4 - 2131053*T3^3 + 34882011*T3^2 - 44620542*T3 + 158608836
acting on S 4 n e w ( 280 , [ χ ] ) S_{4}^{\mathrm{new}}(280, [\chi]) S 4 n e w ( 2 8 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 + ⋯ + 158608836 T^{12} + \cdots + 158608836 T 1 2 + ⋯ + 1 5 8 6 0 8 8 3 6
T^12 + 7*T^11 + 125*T^10 + 136*T^9 + 6341*T^8 + 4105*T^7 + 196315*T^6 - 141804*T^5 + 3369747*T^4 - 2131053*T^3 + 34882011*T^2 - 44620542*T + 158608836
5 5 5
( T 2 − 5 T + 25 ) 6 (T^{2} - 5 T + 25)^{6} ( T 2 − 5 T + 2 5 ) 6
(T^2 - 5*T + 25)^6
7 7 7
T 12 + ⋯ + 16 ⋯ 49 T^{12} + \cdots + 16\!\cdots\!49 T 1 2 + ⋯ + 1 6 ⋯ 4 9
T^12 + T^11 - 376*T^10 - 8971*T^9 - 74004*T^8 + 2080785*T^7 + 91731234*T^6 + 713709255*T^5 - 8706496596*T^4 - 362012208397*T^3 - 5204323987576*T^2 + 4747561509943*T + 1628413597910449
11 11 1 1
T 12 + ⋯ + 16 ⋯ 76 T^{12} + \cdots + 16\!\cdots\!76 T 1 2 + ⋯ + 1 6 ⋯ 7 6
T^12 - 51*T^11 + 5003*T^10 - 225674*T^9 + 15716956*T^8 - 612825472*T^7 + 25944967600*T^6 - 663124342880*T^5 + 19142467725632*T^4 - 356473684468224*T^3 + 8709900782303488*T^2 - 110199269288391168*T + 1655709545074738176
13 13 1 3
( T 6 + 27 T 5 + ⋯ + 664762112 ) 2 (T^{6} + 27 T^{5} + \cdots + 664762112)^{2} ( T 6 + 2 7 T 5 + ⋯ + 6 6 4 7 6 2 1 1 2 ) 2
(T^6 + 27*T^5 - 5328*T^4 - 133140*T^3 + 6439488*T^2 + 139299840*T + 664762112)^2
17 17 1 7
T 12 + ⋯ + 12 ⋯ 56 T^{12} + \cdots + 12\!\cdots\!56 T 1 2 + ⋯ + 1 2 ⋯ 5 6
T^12 + 6*T^11 + 11792*T^10 + 300264*T^9 + 117639616*T^8 + 1800536480*T^7 + 287682212032*T^6 - 6821297208064*T^5 + 434701771319296*T^4 - 2991202313932800*T^3 + 38321995498209280*T^2 + 132657652958494720*T + 1244592776314617856
19 19 1 9
T 12 + ⋯ + 25 ⋯ 00 T^{12} + \cdots + 25\!\cdots\!00 T 1 2 + ⋯ + 2 5 ⋯ 0 0
T^12 + 9*T^11 + 28607*T^10 - 43862*T^9 + 639947872*T^8 - 1425397912*T^7 + 5011090928320*T^6 - 93677599140896*T^5 + 30440644020987200*T^4 - 229659094320440832*T^3 + 1452393842637684736*T^2 - 2109409197305856000*T + 2568403685376000000
23 23 2 3
T 12 + ⋯ + 28 ⋯ 89 T^{12} + \cdots + 28\!\cdots\!89 T 1 2 + ⋯ + 2 8 ⋯ 8 9
T^12 - 72*T^11 + 52199*T^10 + 3740344*T^9 + 1578539830*T^8 + 137009559032*T^7 + 33052472367379*T^6 + 3566685114870904*T^5 + 415434206314507622*T^4 + 24650300747425988856*T^3 + 1229852351785886538007*T^2 + 21139564610515307273016*T + 286263578937571325653689
29 29 2 9
( T 6 + 121 T 5 + ⋯ − 7144947798 ) 2 (T^{6} + 121 T^{5} + \cdots - 7144947798)^{2} ( T 6 + 1 2 1 T 5 + ⋯ − 7 1 4 4 9 4 7 7 9 8 ) 2
(T^6 + 121*T^5 - 76456*T^4 - 7045378*T^3 + 651289085*T^2 + 41125983625*T - 7144947798)^2
31 31 3 1
T 12 + ⋯ + 11 ⋯ 96 T^{12} + \cdots + 11\!\cdots\!96 T 1 2 + ⋯ + 1 1 ⋯ 9 6
T^12 + 132*T^11 + 150060*T^10 + 13763792*T^9 + 14913416592*T^8 + 1240178311296*T^7 + 751067135711232*T^6 + 32394197759920128*T^5 + 24576420399803891712*T^4 + 932856244543857754112*T^3 + 334548667683710272339968*T^2 - 14069601181375198460903424*T + 1130757787976608963882909696
37 37 3 7
T 12 + ⋯ + 20 ⋯ 00 T^{12} + \cdots + 20\!\cdots\!00 T 1 2 + ⋯ + 2 0 ⋯ 0 0
T^12 + 523*T^11 + 245085*T^10 + 38148884*T^9 + 7801894560*T^8 + 673849304128*T^7 + 140910473815552*T^6 + 9727268439917568*T^5 + 1346753031966216192*T^4 + 54285841582105165824*T^3 + 7243192703984210804736*T^2 + 253385451881333123973120*T + 20414770576811872380518400
41 41 4 1
( T 6 − 464 T 5 + ⋯ + 445954812315 ) 2 (T^{6} - 464 T^{5} + \cdots + 445954812315)^{2} ( T 6 − 4 6 4 T 5 + ⋯ + 4 4 5 9 5 4 8 1 2 3 1 5 ) 2
(T^6 - 464*T^5 - 26479*T^4 + 27014792*T^3 - 201078765*T^2 - 412067622648*T + 445954812315)^2
43 43 4 3
( T 6 + ⋯ + 62569573723766 ) 2 (T^{6} + \cdots + 62569573723766)^{2} ( T 6 + ⋯ + 6 2 5 6 9 5 7 3 7 2 3 7 6 6 ) 2
(T^6 + 601*T^5 - 100452*T^4 - 97371186*T^3 - 9633605155*T^2 + 985181811657*T + 62569573723766)^2
47 47 4 7
T 12 + ⋯ + 52 ⋯ 64 T^{12} + \cdots + 52\!\cdots\!64 T 1 2 + ⋯ + 5 2 ⋯ 6 4
T^12 - 73*T^11 + 397601*T^10 - 11631184*T^9 + 127802716944*T^8 - 972426638080*T^7 + 11566719697912064*T^6 + 2827539015882829824*T^5 + 728566434660988289024*T^4 + 77077193797837233848320*T^3 + 6442675132044276504985600*T^2 + 209803862757180020222853120*T + 5219866796842034489525796864
53 53 5 3
T 12 + ⋯ + 25 ⋯ 36 T^{12} + \cdots + 25\!\cdots\!36 T 1 2 + ⋯ + 2 5 ⋯ 3 6
T^12 - 999*T^11 + 1070279*T^10 - 410291870*T^9 + 259531255840*T^8 - 57343594431416*T^7 + 44236654978040704*T^6 - 5294676453945325728*T^5 + 3405172826234142855744*T^4 + 100711056581653841843712*T^3 + 179908065875832782251815936*T^2 - 2117590054983895518623342592*T + 25220978654704518325805531136
59 59 5 9
T 12 + ⋯ + 19 ⋯ 96 T^{12} + \cdots + 19\!\cdots\!96 T 1 2 + ⋯ + 1 9 ⋯ 9 6
T^12 + 98*T^11 + 874136*T^10 - 92399576*T^9 + 520783491936*T^8 - 63348866046432*T^7 + 169448900622782016*T^6 - 27609535801390823424*T^5 + 39274530176743521779712*T^4 - 3442456153180816819945472*T^3 + 3380620511378093633960935424*T^2 + 217301877905525543490912518144*T + 191940073631264821142312867332096
61 61 6 1
T 12 + ⋯ + 13 ⋯ 16 T^{12} + \cdots + 13\!\cdots\!16 T 1 2 + ⋯ + 1 3 ⋯ 1 6
T^12 - 111*T^11 + 618167*T^10 - 68222642*T^9 + 281450342077*T^8 - 25017919477045*T^7 + 53066226351087745*T^6 + 1081714442086224934*T^5 + 6738226891746289904411*T^4 + 69390882278241935058537*T^3 + 367134748252109130769220437*T^2 + 17262221112962498866734723372*T + 13765801910945945299474941142416
67 67 6 7
T 12 + ⋯ + 56 ⋯ 96 T^{12} + \cdots + 56\!\cdots\!96 T 1 2 + ⋯ + 5 6 ⋯ 9 6
T^12 + 289*T^11 + 967991*T^10 + 488474878*T^9 + 909388512549*T^8 + 340490597487379*T^7 + 121066840518479129*T^6 + 7482729512369687118*T^5 + 425631214451880551459*T^4 - 1629556435978656013423*T^3 + 27156979491065702226277*T^2 + 83739135482772655707180*T + 561933756320839431178896
71 71 7 1
( T 6 + ⋯ + 16 ⋯ 68 ) 2 (T^{6} + \cdots + 16\!\cdots\!68)^{2} ( T 6 + ⋯ + 1 6 ⋯ 6 8 ) 2
(T^6 + 1834*T^5 - 50188*T^4 - 1632778824*T^3 - 547129326240*T^2 + 362865223574784*T + 163888738205165568)^2
73 73 7 3
T 12 + ⋯ + 44 ⋯ 44 T^{12} + \cdots + 44\!\cdots\!44 T 1 2 + ⋯ + 4 4 ⋯ 4 4
T^12 - 332*T^11 + 757852*T^10 - 464860656*T^9 + 546521080848*T^8 - 240526659067392*T^7 + 104040583700884992*T^6 - 19204302718891763712*T^5 + 4345482266406526795776*T^4 - 296983797981302351757312*T^3 + 128696828144723409558896640*T^2 - 7266654903163992507486830592*T + 442915431072695751901597138944
79 79 7 9
T 12 + ⋯ + 96 ⋯ 04 T^{12} + \cdots + 96\!\cdots\!04 T 1 2 + ⋯ + 9 6 ⋯ 0 4
T^12 - 1368*T^11 + 2614328*T^10 - 1024107648*T^9 + 1672412509360*T^8 - 162179182960896*T^7 + 968404679508477312*T^6 + 89793048014722795008*T^5 + 212855818063939860052224*T^4 + 20049368439920807117426688*T^3 + 33183089764688308759787999232*T^2 + 4867307337359846108326200016896*T + 960904838164819551418764904955904
83 83 8 3
( T 6 + ⋯ + 44 ⋯ 56 ) 2 (T^{6} + \cdots + 44\!\cdots\!56)^{2} ( T 6 + ⋯ + 4 4 ⋯ 5 6 ) 2
(T^6 - 839*T^5 - 1312678*T^4 + 1156517670*T^3 + 259352934409*T^2 - 325796442341647*T + 44536977571818956)^2
89 89 8 9
T 12 + ⋯ + 14 ⋯ 16 T^{12} + \cdots + 14\!\cdots\!16 T 1 2 + ⋯ + 1 4 ⋯ 1 6
T^12 + 1035*T^11 + 3577041*T^10 + 3824978188*T^9 + 9040506124317*T^8 + 8497421904476745*T^7 + 10800021984282151363*T^6 + 6694910873576638249656*T^5 + 6460610653899339677721639*T^4 + 3371998331742556935444039831*T^3 + 2393570291747795695648482404715*T^2 + 620865833536955782689955376770314*T + 147753797308602858281793038865958116
97 97 9 7
( T 6 + ⋯ − 25 ⋯ 52 ) 2 (T^{6} + \cdots - 25\!\cdots\!52)^{2} ( T 6 + ⋯ − 2 5 ⋯ 5 2 ) 2
(T^6 - 4*T^5 - 3303396*T^4 - 504792544*T^3 + 2565527496688*T^2 + 387542093654976*T - 255416978923157952)^2
show more
show less