Properties

Label 280.4.q.c
Level 280280
Weight 44
Character orbit 280.q
Analytic conductor 16.52116.521
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,4,Mod(81,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 280=2357 280 = 2^{3} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 280.q (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.520534801616.5205348016
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+97x10+136x9+6932x8+7120x7+190192x6+97856x5++199148544 x^{12} - x^{11} + 97 x^{10} + 136 x^{9} + 6932 x^{8} + 7120 x^{7} + 190192 x^{6} + 97856 x^{5} + \cdots + 199148544 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 214 2^{14}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5+β31)q3+5β3q5+(β10+2β3+β21)q7+(β11β10+4β1)q9+(β10β9+β6++9)q11++(25β1125β10+498)q99+O(q100) q + ( - \beta_{5} + \beta_{3} - 1) q^{3} + 5 \beta_{3} q^{5} + (\beta_{10} + 2 \beta_{3} + \beta_{2} - 1) q^{7} + ( - \beta_{11} - \beta_{10} + \cdots - 4 \beta_1) q^{9} + ( - \beta_{10} - \beta_{9} + \beta_{6} + \cdots + 9) q^{11}+ \cdots + (25 \beta_{11} - 25 \beta_{10} + \cdots - 498) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q7q3+30q5q739q9+51q1154q1370q156q179q19+123q21+72q23150q25+1118q27242q29132q31+156q33115q35+6978q99+O(q100) 12 q - 7 q^{3} + 30 q^{5} - q^{7} - 39 q^{9} + 51 q^{11} - 54 q^{13} - 70 q^{15} - 6 q^{17} - 9 q^{19} + 123 q^{21} + 72 q^{23} - 150 q^{25} + 1118 q^{27} - 242 q^{29} - 132 q^{31} + 156 q^{33} - 115 q^{35}+ \cdots - 6978 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12x11+97x10+136x9+6932x8+7120x7+190192x6+97856x5++199148544 x^{12} - x^{11} + 97 x^{10} + 136 x^{9} + 6932 x^{8} + 7120 x^{7} + 190192 x^{6} + 97856 x^{5} + \cdots + 199148544 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (5144955608ν1163399912935ν1017165331791883ν9+45225604010075ν8++34 ⁣ ⁣96)/22 ⁣ ⁣84 ( 5144955608 \nu^{11} - 63399912935 \nu^{10} - 17165331791883 \nu^{9} + 45225604010075 \nu^{8} + \cdots + 34\!\cdots\!96 ) / 22\!\cdots\!84 Copy content Toggle raw display
β3\beta_{3}== (23266726295ν11+288099243676ν10+1745352572186ν9++91 ⁣ ⁣28)/67 ⁣ ⁣52 ( 23266726295 \nu^{11} + 288099243676 \nu^{10} + 1745352572186 \nu^{9} + \cdots + 91\!\cdots\!28 ) / 67\!\cdots\!52 Copy content Toggle raw display
β4\beta_{4}== (79243202735ν111106092690847ν10+13009368288059ν9++58 ⁣ ⁣40)/67 ⁣ ⁣52 ( 79243202735 \nu^{11} - 1106092690847 \nu^{10} + 13009368288059 \nu^{9} + \cdots + 58\!\cdots\!40 ) / 67\!\cdots\!52 Copy content Toggle raw display
β5\beta_{5}== (14826950951ν11+24358089449ν101325595039257ν9++22 ⁣ ⁣80)/32 ⁣ ⁣12 ( - 14826950951 \nu^{11} + 24358089449 \nu^{10} - 1325595039257 \nu^{9} + \cdots + 22\!\cdots\!80 ) / 32\!\cdots\!12 Copy content Toggle raw display
β6\beta_{6}== (18305245152ν11+603360023261ν10+1436579804809ν9++25 ⁣ ⁣92)/37 ⁣ ⁣64 ( 18305245152 \nu^{11} + 603360023261 \nu^{10} + 1436579804809 \nu^{9} + \cdots + 25\!\cdots\!92 ) / 37\!\cdots\!64 Copy content Toggle raw display
β7\beta_{7}== (279440238408ν11+383921255709ν10+6378010240201ν9+17 ⁣ ⁣20)/22 ⁣ ⁣84 ( 279440238408 \nu^{11} + 383921255709 \nu^{10} + 6378010240201 \nu^{9} + \cdots - 17\!\cdots\!20 ) / 22\!\cdots\!84 Copy content Toggle raw display
β8\beta_{8}== (868684120625ν11+1942888905761ν1090244855812413ν9++61 ⁣ ⁣12)/33 ⁣ ⁣76 ( - 868684120625 \nu^{11} + 1942888905761 \nu^{10} - 90244855812413 \nu^{9} + \cdots + 61\!\cdots\!12 ) / 33\!\cdots\!76 Copy content Toggle raw display
β9\beta_{9}== (699311292110ν113038539372501ν1056929262300333ν9++64 ⁣ ⁣24)/16 ⁣ ⁣88 ( - 699311292110 \nu^{11} - 3038539372501 \nu^{10} - 56929262300333 \nu^{9} + \cdots + 64\!\cdots\!24 ) / 16\!\cdots\!88 Copy content Toggle raw display
β10\beta_{10}== (2977161987743ν1110713100087955ν10+314020590874775ν9+15 ⁣ ⁣56)/67 ⁣ ⁣52 ( 2977161987743 \nu^{11} - 10713100087955 \nu^{10} + 314020590874775 \nu^{9} + \cdots - 15\!\cdots\!56 ) / 67\!\cdots\!52 Copy content Toggle raw display
β11\beta_{11}== (1173847773575ν11+1286309184371ν10118305612912423ν9+25 ⁣ ⁣72)/22 ⁣ ⁣84 ( - 1173847773575 \nu^{11} + 1286309184371 \nu^{10} - 118305612912423 \nu^{9} + \cdots - 25\!\cdots\!72 ) / 22\!\cdots\!84 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11+β10β72β5+32β3+β231 \beta_{11} + \beta_{10} - \beta_{7} - 2\beta_{5} + 32\beta_{3} + \beta_{2} - 31 Copy content Toggle raw display
ν3\nu^{3}== 3β113β10β95β811β756β55β4+36 3 \beta_{11} - 3 \beta_{10} - \beta_{9} - 5 \beta_{8} - 11 \beta_{7} - 56 \beta_{5} - 5 \beta_{4} + \cdots - 36 Copy content Toggle raw display
ν4\nu^{4}== 83β1190β1013β87β711β61613β3+6β2231β1+13 -83\beta_{11} - 90\beta_{10} - 13\beta_{8} - 7\beta_{7} - 11\beta_{6} - 1613\beta_{3} + 6\beta_{2} - 231\beta _1 + 13 Copy content Toggle raw display
ν5\nu^{5}== 602β11391β10+107β9+800β7107β6+3732β5++5569 - 602 \beta_{11} - 391 \beta_{10} + 107 \beta_{9} + 800 \beta_{7} - 107 \beta_{6} + 3732 \beta_{5} + \cdots + 5569 Copy content Toggle raw display
ν6\nu^{6}== 943β11+943β10+1183β9+1757β8+8855β7+23076β5++94192 - 943 \beta_{11} + 943 \beta_{10} + 1183 \beta_{9} + 1757 \beta_{8} + 8855 \beta_{7} + 23076 \beta_{5} + \cdots + 94192 Copy content Toggle raw display
ν7\nu^{7}== 37887β11+52434β10+29961β8+14547β7+9411β6+615105β3+29961 37887 \beta_{11} + 52434 \beta_{10} + 29961 \beta_{8} + 14547 \beta_{7} + 9411 \beta_{6} + 615105 \beta_{3} + \cdots - 29961 Copy content Toggle raw display
ν8\nu^{8}== 552202β11+460771β1099543β9634792β7+99543β6+6845173 552202 \beta_{11} + 460771 \beta_{10} - 99543 \beta_{9} - 634792 \beta_{7} + 99543 \beta_{6} + \cdots - 6845173 Copy content Toggle raw display
ν9\nu^{9}== 1066731β111066731β10791131β92221265β86610355β7+46030512 1066731 \beta_{11} - 1066731 \beta_{10} - 791131 \beta_{9} - 2221265 \beta_{8} - 6610355 \beta_{7} + \cdots - 46030512 Copy content Toggle raw display
ν10\nu^{10}== 35287739β1143244826β1015457261β87957087β77940495β6++15457261 - 35287739 \beta_{11} - 43244826 \beta_{10} - 15457261 \beta_{8} - 7957087 \beta_{7} - 7940495 \beta_{6} + \cdots + 15457261 Copy content Toggle raw display
ν11\nu^{11}== 360656498β11279055087β10+65288435β9+447993608β7++4060966729 - 360656498 \beta_{11} - 279055087 \beta_{10} + 65288435 \beta_{9} + 447993608 \beta_{7} + \cdots + 4060966729 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/280Z)×\left(\mathbb{Z}/280\mathbb{Z}\right)^\times.

nn 5757 7171 141141 241241
χ(n)\chi(n) 11 11 11 β3-\beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
4.47849 + 7.75697i
2.25227 + 3.90105i
1.45114 + 2.51344i
−1.73749 3.00942i
−2.56740 4.44687i
−3.37701 5.84915i
4.47849 7.75697i
2.25227 3.90105i
1.45114 2.51344i
−1.73749 + 3.00942i
−2.56740 + 4.44687i
−3.37701 + 5.84915i
0 −4.97849 + 8.62300i 0 2.50000 + 4.33013i 0 −14.6186 + 11.3709i 0 −36.0707 62.4763i 0
81.2 0 −2.75227 + 4.76708i 0 2.50000 + 4.33013i 0 18.4919 + 1.02408i 0 −1.65001 2.85789i 0
81.3 0 −1.95114 + 3.37947i 0 2.50000 + 4.33013i 0 −5.33627 17.7348i 0 5.88613 + 10.1951i 0
81.4 0 1.23749 2.14339i 0 2.50000 + 4.33013i 0 17.8048 + 5.09810i 0 10.4372 + 18.0778i 0
81.5 0 2.06740 3.58085i 0 2.50000 + 4.33013i 0 −17.7560 5.26551i 0 4.95169 + 8.57658i 0
81.6 0 2.87701 4.98312i 0 2.50000 + 4.33013i 0 0.914156 + 18.4977i 0 −3.05435 5.29029i 0
121.1 0 −4.97849 8.62300i 0 2.50000 4.33013i 0 −14.6186 11.3709i 0 −36.0707 + 62.4763i 0
121.2 0 −2.75227 4.76708i 0 2.50000 4.33013i 0 18.4919 1.02408i 0 −1.65001 + 2.85789i 0
121.3 0 −1.95114 3.37947i 0 2.50000 4.33013i 0 −5.33627 + 17.7348i 0 5.88613 10.1951i 0
121.4 0 1.23749 + 2.14339i 0 2.50000 4.33013i 0 17.8048 5.09810i 0 10.4372 18.0778i 0
121.5 0 2.06740 + 3.58085i 0 2.50000 4.33013i 0 −17.7560 + 5.26551i 0 4.95169 8.57658i 0
121.6 0 2.87701 + 4.98312i 0 2.50000 4.33013i 0 0.914156 18.4977i 0 −3.05435 + 5.29029i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.4.q.c 12
4.b odd 2 1 560.4.q.r 12
7.c even 3 1 inner 280.4.q.c 12
7.c even 3 1 1960.4.a.ba 6
7.d odd 6 1 1960.4.a.x 6
28.g odd 6 1 560.4.q.r 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.q.c 12 1.a even 1 1 trivial
280.4.q.c 12 7.c even 3 1 inner
560.4.q.r 12 4.b odd 2 1
560.4.q.r 12 28.g odd 6 1
1960.4.a.x 6 7.d odd 6 1
1960.4.a.ba 6 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312+7T311+125T310+136T39+6341T38+4105T37++158608836 T_{3}^{12} + 7 T_{3}^{11} + 125 T_{3}^{10} + 136 T_{3}^{9} + 6341 T_{3}^{8} + 4105 T_{3}^{7} + \cdots + 158608836 acting on S4new(280,[χ])S_{4}^{\mathrm{new}}(280, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12++158608836 T^{12} + \cdots + 158608836 Copy content Toggle raw display
55 (T25T+25)6 (T^{2} - 5 T + 25)^{6} Copy content Toggle raw display
77 T12++16 ⁣ ⁣49 T^{12} + \cdots + 16\!\cdots\!49 Copy content Toggle raw display
1111 T12++16 ⁣ ⁣76 T^{12} + \cdots + 16\!\cdots\!76 Copy content Toggle raw display
1313 (T6+27T5++664762112)2 (T^{6} + 27 T^{5} + \cdots + 664762112)^{2} Copy content Toggle raw display
1717 T12++12 ⁣ ⁣56 T^{12} + \cdots + 12\!\cdots\!56 Copy content Toggle raw display
1919 T12++25 ⁣ ⁣00 T^{12} + \cdots + 25\!\cdots\!00 Copy content Toggle raw display
2323 T12++28 ⁣ ⁣89 T^{12} + \cdots + 28\!\cdots\!89 Copy content Toggle raw display
2929 (T6+121T5+7144947798)2 (T^{6} + 121 T^{5} + \cdots - 7144947798)^{2} Copy content Toggle raw display
3131 T12++11 ⁣ ⁣96 T^{12} + \cdots + 11\!\cdots\!96 Copy content Toggle raw display
3737 T12++20 ⁣ ⁣00 T^{12} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
4141 (T6464T5++445954812315)2 (T^{6} - 464 T^{5} + \cdots + 445954812315)^{2} Copy content Toggle raw display
4343 (T6++62569573723766)2 (T^{6} + \cdots + 62569573723766)^{2} Copy content Toggle raw display
4747 T12++52 ⁣ ⁣64 T^{12} + \cdots + 52\!\cdots\!64 Copy content Toggle raw display
5353 T12++25 ⁣ ⁣36 T^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
5959 T12++19 ⁣ ⁣96 T^{12} + \cdots + 19\!\cdots\!96 Copy content Toggle raw display
6161 T12++13 ⁣ ⁣16 T^{12} + \cdots + 13\!\cdots\!16 Copy content Toggle raw display
6767 T12++56 ⁣ ⁣96 T^{12} + \cdots + 56\!\cdots\!96 Copy content Toggle raw display
7171 (T6++16 ⁣ ⁣68)2 (T^{6} + \cdots + 16\!\cdots\!68)^{2} Copy content Toggle raw display
7373 T12++44 ⁣ ⁣44 T^{12} + \cdots + 44\!\cdots\!44 Copy content Toggle raw display
7979 T12++96 ⁣ ⁣04 T^{12} + \cdots + 96\!\cdots\!04 Copy content Toggle raw display
8383 (T6++44 ⁣ ⁣56)2 (T^{6} + \cdots + 44\!\cdots\!56)^{2} Copy content Toggle raw display
8989 T12++14 ⁣ ⁣16 T^{12} + \cdots + 14\!\cdots\!16 Copy content Toggle raw display
9797 (T6+25 ⁣ ⁣52)2 (T^{6} + \cdots - 25\!\cdots\!52)^{2} Copy content Toggle raw display
show more
show less