L(s) = 1 | + (0.258 − 0.965i)2-s + (0.965 − 0.258i)5-s + (0.5 + 0.866i)7-s + (0.707 − 0.707i)8-s − i·10-s + (−1.22 + 0.707i)11-s + (0.366 + 1.36i)13-s + (0.965 − 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.707 + 0.707i)17-s + 19-s + (0.366 + 1.36i)22-s + (−0.258 − 0.965i)23-s + (0.866 − 0.499i)25-s + 1.41·26-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (0.965 − 0.258i)5-s + (0.5 + 0.866i)7-s + (0.707 − 0.707i)8-s − i·10-s + (−1.22 + 0.707i)11-s + (0.366 + 1.36i)13-s + (0.965 − 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.707 + 0.707i)17-s + 19-s + (0.366 + 1.36i)22-s + (−0.258 − 0.965i)23-s + (0.866 − 0.499i)25-s + 1.41·26-s + ⋯ |
Λ(s)=(=(2835s/2ΓC(s)L(s)(0.801+0.597i)Λ(1−s)
Λ(s)=(=(2835s/2ΓC(s)L(s)(0.801+0.597i)Λ(1−s)
Degree: |
2 |
Conductor: |
2835
= 34⋅5⋅7
|
Sign: |
0.801+0.597i
|
Analytic conductor: |
1.41484 |
Root analytic conductor: |
1.18947 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2835(2078,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2835, ( :0), 0.801+0.597i)
|
Particular Values
L(21) |
≈ |
1.929100186 |
L(21) |
≈ |
1.929100186 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.965+0.258i)T |
| 7 | 1+(−0.5−0.866i)T |
good | 2 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 11 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 13 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 17 | 1+(0.707−0.707i)T−iT2 |
| 19 | 1−T+T2 |
| 23 | 1+(0.258+0.965i)T+(−0.866+0.5i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 37 | 1−iT2 |
| 41 | 1+(−0.5−0.866i)T2 |
| 43 | 1+(−0.866−0.5i)T2 |
| 47 | 1+(0.866+0.5i)T2 |
| 53 | 1+(−0.707+0.707i)T−iT2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 67 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1−iT2 |
| 79 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 83 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 89 | 1−1.41iT−T2 |
| 97 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.091842448431212075022971356729, −8.310967415000583870660116940363, −7.36638860826879873365893506291, −6.54113084286608228679185775503, −5.69052233363673209598990398611, −4.83843405493955903263452960499, −4.20519399287599994929780440874, −2.89268367864770540438659283479, −2.10432090071041048414089705210, −1.69067916094587954425347107375,
1.25560904933219782135934104531, 2.50814225930910585847458600436, 3.39986208141036299490156512662, 4.79588706888379948779018938300, 5.48474827930793682601758413556, 5.76041998054564081019965803431, 6.84216997709932410841533116849, 7.49513336554350351685245673434, 7.950406214537544147540246496202, 8.851214569993272235900063209583