L(s) = 1 | + (0.258 − 0.965i)2-s + (0.965 − 0.258i)5-s + (0.5 + 0.866i)7-s + (0.707 − 0.707i)8-s − i·10-s + (−1.22 + 0.707i)11-s + (0.366 + 1.36i)13-s + (0.965 − 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.707 + 0.707i)17-s + 19-s + (0.366 + 1.36i)22-s + (−0.258 − 0.965i)23-s + (0.866 − 0.499i)25-s + 1.41·26-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (0.965 − 0.258i)5-s + (0.5 + 0.866i)7-s + (0.707 − 0.707i)8-s − i·10-s + (−1.22 + 0.707i)11-s + (0.366 + 1.36i)13-s + (0.965 − 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.707 + 0.707i)17-s + 19-s + (0.366 + 1.36i)22-s + (−0.258 − 0.965i)23-s + (0.866 − 0.499i)25-s + 1.41·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2835 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2835 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.929100186\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.929100186\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.965 + 0.258i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.091842448431212075022971356729, −8.310967415000583870660116940363, −7.36638860826879873365893506291, −6.54113084286608228679185775503, −5.69052233363673209598990398611, −4.83843405493955903263452960499, −4.20519399287599994929780440874, −2.89268367864770540438659283479, −2.10432090071041048414089705210, −1.69067916094587954425347107375,
1.25560904933219782135934104531, 2.50814225930910585847458600436, 3.39986208141036299490156512662, 4.79588706888379948779018938300, 5.48474827930793682601758413556, 5.76041998054564081019965803431, 6.84216997709932410841533116849, 7.49513336554350351685245673434, 7.950406214537544147540246496202, 8.851214569993272235900063209583