Properties

Label 2835.1.ci.b
Level $2835$
Weight $1$
Character orbit 2835.ci
Analytic conductor $1.415$
Analytic rank $0$
Dimension $8$
Projective image $S_{4}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2835,1,Mod(188,2835)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 9, 6]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2835.188");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2835 = 3^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2835.ci (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.41484931081\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 945)
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.165375.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{24}^{7} q^{2} + \zeta_{24}^{11} q^{5} + \zeta_{24}^{4} q^{7} + \zeta_{24}^{9} q^{8} - \zeta_{24}^{6} q^{10} + ( - \zeta_{24}^{7} + \zeta_{24}) q^{11} + (\zeta_{24}^{8} + \zeta_{24}^{2}) q^{13} + \cdots - \zeta_{24}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 4 q^{13} - 4 q^{16} + 8 q^{19} - 4 q^{22} + 4 q^{34} + 4 q^{40} - 8 q^{46} - 4 q^{49} - 8 q^{55} + 4 q^{67} - 4 q^{85} + 4 q^{88} - 8 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2835\mathbb{Z}\right)^\times\).

\(n\) \(1541\) \(1702\) \(2026\)
\(\chi(n)\) \(-\zeta_{24}^{8}\) \(-\zeta_{24}^{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
188.1
0.258819 + 0.965926i
−0.258819 0.965926i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.965926 + 0.258819i
−0.965926 0.258819i
−0.965926 + 0.258819i 0 0 −0.258819 + 0.965926i 0 0.500000 0.866025i 0.707107 0.707107i 0 1.00000i
188.2 0.965926 0.258819i 0 0 0.258819 0.965926i 0 0.500000 0.866025i −0.707107 + 0.707107i 0 1.00000i
377.1 −0.965926 0.258819i 0 0 −0.258819 0.965926i 0 0.500000 + 0.866025i 0.707107 + 0.707107i 0 1.00000i
377.2 0.965926 + 0.258819i 0 0 0.258819 + 0.965926i 0 0.500000 + 0.866025i −0.707107 0.707107i 0 1.00000i
1322.1 −0.258819 0.965926i 0 0 −0.965926 0.258819i 0 0.500000 0.866025i −0.707107 0.707107i 0 1.00000i
1322.2 0.258819 + 0.965926i 0 0 0.965926 + 0.258819i 0 0.500000 0.866025i 0.707107 + 0.707107i 0 1.00000i
2078.1 −0.258819 + 0.965926i 0 0 −0.965926 + 0.258819i 0 0.500000 + 0.866025i −0.707107 + 0.707107i 0 1.00000i
2078.2 0.258819 0.965926i 0 0 0.965926 0.258819i 0 0.500000 + 0.866025i 0.707107 0.707107i 0 1.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 188.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
35.f even 4 1 inner
105.k odd 4 1 inner
315.cb even 12 1 inner
315.cf odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2835.1.ci.b 8
3.b odd 2 1 inner 2835.1.ci.b 8
5.c odd 4 1 2835.1.ci.a 8
7.b odd 2 1 2835.1.ci.a 8
9.c even 3 1 945.1.n.a 4
9.c even 3 1 inner 2835.1.ci.b 8
9.d odd 6 1 945.1.n.a 4
9.d odd 6 1 inner 2835.1.ci.b 8
15.e even 4 1 2835.1.ci.a 8
21.c even 2 1 2835.1.ci.a 8
35.f even 4 1 inner 2835.1.ci.b 8
45.k odd 12 1 945.1.n.b yes 4
45.k odd 12 1 2835.1.ci.a 8
45.l even 12 1 945.1.n.b yes 4
45.l even 12 1 2835.1.ci.a 8
63.l odd 6 1 945.1.n.b yes 4
63.l odd 6 1 2835.1.ci.a 8
63.o even 6 1 945.1.n.b yes 4
63.o even 6 1 2835.1.ci.a 8
105.k odd 4 1 inner 2835.1.ci.b 8
315.cb even 12 1 945.1.n.a 4
315.cb even 12 1 inner 2835.1.ci.b 8
315.cf odd 12 1 945.1.n.a 4
315.cf odd 12 1 inner 2835.1.ci.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
945.1.n.a 4 9.c even 3 1
945.1.n.a 4 9.d odd 6 1
945.1.n.a 4 315.cb even 12 1
945.1.n.a 4 315.cf odd 12 1
945.1.n.b yes 4 45.k odd 12 1
945.1.n.b yes 4 45.l even 12 1
945.1.n.b yes 4 63.l odd 6 1
945.1.n.b yes 4 63.o even 6 1
2835.1.ci.a 8 5.c odd 4 1
2835.1.ci.a 8 7.b odd 2 1
2835.1.ci.a 8 15.e even 4 1
2835.1.ci.a 8 21.c even 2 1
2835.1.ci.a 8 45.k odd 12 1
2835.1.ci.a 8 45.l even 12 1
2835.1.ci.a 8 63.l odd 6 1
2835.1.ci.a 8 63.o even 6 1
2835.1.ci.b 8 1.a even 1 1 trivial
2835.1.ci.b 8 3.b odd 2 1 inner
2835.1.ci.b 8 9.c even 3 1 inner
2835.1.ci.b 8 9.d odd 6 1 inner
2835.1.ci.b 8 35.f even 4 1 inner
2835.1.ci.b 8 105.k odd 4 1 inner
2835.1.ci.b 8 315.cb even 12 1 inner
2835.1.ci.b 8 315.cf odd 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{4} + 2T_{13}^{3} + 2T_{13}^{2} + 4T_{13} + 4 \) acting on \(S_{1}^{\mathrm{new}}(2835, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
show more
show less