L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 4·7-s + 8-s + 9-s + 4·11-s + 12-s − 4·14-s + 16-s + 2·17-s + 18-s + 19-s − 4·21-s + 4·22-s + 2·23-s + 24-s + 27-s − 4·28-s − 6·29-s + 6·31-s + 32-s + 4·33-s + 2·34-s + 36-s + 8·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 1.20·11-s + 0.288·12-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.229·19-s − 0.872·21-s + 0.852·22-s + 0.417·23-s + 0.204·24-s + 0.192·27-s − 0.755·28-s − 1.11·29-s + 1.07·31-s + 0.176·32-s + 0.696·33-s + 0.342·34-s + 1/6·36-s + 1.31·37-s + ⋯ |
Λ(s)=(=(2850s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2850s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.414798048 |
L(21) |
≈ |
3.414798048 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 5 | 1 |
| 19 | 1−T |
good | 7 | 1+4T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−2T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1+10T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−16T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.075576842406541201241594770774, −7.80954843090816149956704777250, −7.22822931232102684143493050402, −6.24265288481434745554412487281, −6.04547848262920215925763806415, −4.68475865669594320244755229333, −3.85809577170289018122041589134, −3.25425866639495471915764029739, −2.44562386899404817546775712870, −1.04269711977505524501535875684,
1.04269711977505524501535875684, 2.44562386899404817546775712870, 3.25425866639495471915764029739, 3.85809577170289018122041589134, 4.68475865669594320244755229333, 6.04547848262920215925763806415, 6.24265288481434745554412487281, 7.22822931232102684143493050402, 7.80954843090816149956704777250, 9.075576842406541201241594770774