L(s) = 1 | − 40·7-s + 420·25-s − 248·31-s − 372·49-s + 120·73-s − 376·79-s + 520·97-s + 2.28e3·103-s + 2.44e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.74e3·169-s + 173-s − 1.68e4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 2.15·7-s + 3.35·25-s − 1.43·31-s − 1.08·49-s + 0.192·73-s − 0.535·79-s + 0.544·97-s + 2.18·103-s + 1.83·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.795·169-s + 0.000439·173-s − 7.25·175-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + ⋯ |
Λ(s)=(=((220⋅38)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((220⋅38)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅38
|
Sign: |
1
|
Analytic conductor: |
83374.6 |
Root analytic conductor: |
4.12220 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅38, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.2981213762 |
L(21) |
≈ |
0.2981213762 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−42pT2+p6T4)2 |
| 7 | C2 | (1+10T+p3T2)4 |
| 11 | C22 | (1−1222T2+p6T4)2 |
| 13 | C22 | (1−874T2+p6T4)2 |
| 17 | C22 | (1+4194T2+p6T4)2 |
| 19 | C22 | (1+362T2+p6T4)2 |
| 23 | C22 | (1+1806T2+p6T4)2 |
| 29 | C22 | (1+12062T2+p6T4)2 |
| 31 | C2 | (1+2pT+p3T2)4 |
| 37 | C22 | (1−97786T2+p6T4)2 |
| 41 | C22 | (1−2958T2+p6T4)2 |
| 43 | C22 | (1−144934T2+p6T4)2 |
| 47 | C22 | (1+4894T2+p6T4)2 |
| 53 | C22 | (1−280114T2+p6T4)2 |
| 59 | C22 | (1+127482T2+p6T4)2 |
| 61 | C22 | (1−168842T2+p6T4)2 |
| 67 | C22 | (1−94646T2+p6T4)2 |
| 71 | C2 | (1+p3T2)4 |
| 73 | C2 | (1−30T+p3T2)4 |
| 79 | C2 | (1+94T+p3T2)4 |
| 83 | C22 | (1−694134T2+p6T4)2 |
| 89 | C22 | (1+846738T2+p6T4)2 |
| 97 | C2 | (1−130T+p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.182955577806507176805367752384, −7.973105939005372437240550521558, −7.47797754408745442202415847960, −7.36837078979486428617197039598, −6.87359066905063971362898920330, −6.73590517830974794752686196014, −6.73018309164840051319366687763, −6.35275359434611735562757618653, −6.17949799467147215748418856336, −5.71787271307614744210991680586, −5.47208158849970056064865173978, −5.23983854672807806249488239578, −4.74174444524037927031743085510, −4.63733058652809752898203247451, −4.36404430933712176673413138925, −3.65774777900274509571381063927, −3.49911373794932381001709001421, −3.35143552432572228030071450784, −2.84771545662906970637974875852, −2.83972618018538893084396259883, −2.22932242136234250296507859662, −1.72726583032781484984080730914, −1.19651747452334224848339462325, −0.76095503809034163300793139936, −0.11598757161119102119435961137,
0.11598757161119102119435961137, 0.76095503809034163300793139936, 1.19651747452334224848339462325, 1.72726583032781484984080730914, 2.22932242136234250296507859662, 2.83972618018538893084396259883, 2.84771545662906970637974875852, 3.35143552432572228030071450784, 3.49911373794932381001709001421, 3.65774777900274509571381063927, 4.36404430933712176673413138925, 4.63733058652809752898203247451, 4.74174444524037927031743085510, 5.23983854672807806249488239578, 5.47208158849970056064865173978, 5.71787271307614744210991680586, 6.17949799467147215748418856336, 6.35275359434611735562757618653, 6.73018309164840051319366687763, 6.73590517830974794752686196014, 6.87359066905063971362898920330, 7.36837078979486428617197039598, 7.47797754408745442202415847960, 7.973105939005372437240550521558, 8.182955577806507176805367752384