Properties

Label 288.4.d.c.145.4
Level $288$
Weight $4$
Character 288.145
Analytic conductor $16.993$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,4,Mod(145,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.145");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 288.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9925500817\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-10}, \sqrt{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 145.4
Root \(2.34521 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 288.145
Dual form 288.4.d.c.145.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.32456i q^{5} -10.0000 q^{7} -37.9473i q^{11} +59.3296i q^{13} -75.0467 q^{17} -118.659i q^{19} -150.093 q^{23} +85.0000 q^{25} -246.658i q^{29} -62.0000 q^{31} -63.2456i q^{35} +59.3296i q^{37} -375.233 q^{41} +118.659i q^{43} -450.280 q^{47} -243.000 q^{49} -132.816i q^{53} +240.000 q^{55} -733.648i q^{59} -533.966i q^{61} -375.233 q^{65} +711.955i q^{67} +30.0000 q^{73} +379.473i q^{77} -94.0000 q^{79} +670.403i q^{83} -474.637i q^{85} +750.467 q^{89} -593.296i q^{91} +750.467 q^{95} +130.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 40 q^{7} + 340 q^{25} - 248 q^{31} - 972 q^{49} + 960 q^{55} + 120 q^{73} - 376 q^{79} + 520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.32456i 0.565685i 0.959166 + 0.282843i \(0.0912774\pi\)
−0.959166 + 0.282843i \(0.908723\pi\)
\(6\) 0 0
\(7\) −10.0000 −0.539949 −0.269975 0.962867i \(-0.587015\pi\)
−0.269975 + 0.962867i \(0.587015\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 37.9473i − 1.04014i −0.854123 0.520071i \(-0.825906\pi\)
0.854123 0.520071i \(-0.174094\pi\)
\(12\) 0 0
\(13\) 59.3296i 1.26577i 0.774244 + 0.632887i \(0.218130\pi\)
−0.774244 + 0.632887i \(0.781870\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −75.0467 −1.07068 −0.535338 0.844638i \(-0.679816\pi\)
−0.535338 + 0.844638i \(0.679816\pi\)
\(18\) 0 0
\(19\) − 118.659i − 1.43275i −0.697715 0.716376i \(-0.745800\pi\)
0.697715 0.716376i \(-0.254200\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −150.093 −1.36072 −0.680361 0.732877i \(-0.738177\pi\)
−0.680361 + 0.732877i \(0.738177\pi\)
\(24\) 0 0
\(25\) 85.0000 0.680000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 246.658i − 1.57942i −0.613480 0.789710i \(-0.710231\pi\)
0.613480 0.789710i \(-0.289769\pi\)
\(30\) 0 0
\(31\) −62.0000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 63.2456i − 0.305441i
\(36\) 0 0
\(37\) 59.3296i 0.263614i 0.991275 + 0.131807i \(0.0420779\pi\)
−0.991275 + 0.131807i \(0.957922\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −375.233 −1.42931 −0.714654 0.699479i \(-0.753416\pi\)
−0.714654 + 0.699479i \(0.753416\pi\)
\(42\) 0 0
\(43\) 118.659i 0.420822i 0.977613 + 0.210411i \(0.0674802\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −450.280 −1.39745 −0.698724 0.715391i \(-0.746249\pi\)
−0.698724 + 0.715391i \(0.746249\pi\)
\(48\) 0 0
\(49\) −243.000 −0.708455
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 132.816i − 0.344220i −0.985078 0.172110i \(-0.944942\pi\)
0.985078 0.172110i \(-0.0550584\pi\)
\(54\) 0 0
\(55\) 240.000 0.588393
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 733.648i − 1.61886i −0.587215 0.809431i \(-0.699776\pi\)
0.587215 0.809431i \(-0.300224\pi\)
\(60\) 0 0
\(61\) − 533.966i − 1.12078i −0.828230 0.560388i \(-0.810652\pi\)
0.828230 0.560388i \(-0.189348\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −375.233 −0.716030
\(66\) 0 0
\(67\) 711.955i 1.29820i 0.760705 + 0.649098i \(0.224854\pi\)
−0.760705 + 0.649098i \(0.775146\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 30.0000 0.0480991 0.0240496 0.999711i \(-0.492344\pi\)
0.0240496 + 0.999711i \(0.492344\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 379.473i 0.561623i
\(78\) 0 0
\(79\) −94.0000 −0.133871 −0.0669356 0.997757i \(-0.521322\pi\)
−0.0669356 + 0.997757i \(0.521322\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 670.403i 0.886582i 0.896378 + 0.443291i \(0.146189\pi\)
−0.896378 + 0.443291i \(0.853811\pi\)
\(84\) 0 0
\(85\) − 474.637i − 0.605666i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 750.467 0.893812 0.446906 0.894581i \(-0.352526\pi\)
0.446906 + 0.894581i \(0.352526\pi\)
\(90\) 0 0
\(91\) − 593.296i − 0.683454i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 750.467 0.810487
\(96\) 0 0
\(97\) 130.000 0.136077 0.0680387 0.997683i \(-0.478326\pi\)
0.0680387 + 0.997683i \(0.478326\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 562.885i − 0.554546i −0.960791 0.277273i \(-0.910569\pi\)
0.960791 0.277273i \(-0.0894307\pi\)
\(102\) 0 0
\(103\) 570.000 0.545279 0.272640 0.962116i \(-0.412103\pi\)
0.272640 + 0.962116i \(0.412103\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1290.21i 1.16569i 0.812582 + 0.582847i \(0.198061\pi\)
−0.812582 + 0.582847i \(0.801939\pi\)
\(108\) 0 0
\(109\) 1720.56i 1.51192i 0.654616 + 0.755961i \(0.272830\pi\)
−0.654616 + 0.755961i \(0.727170\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1350.84 1.12457 0.562285 0.826944i \(-0.309923\pi\)
0.562285 + 0.826944i \(0.309923\pi\)
\(114\) 0 0
\(115\) − 949.273i − 0.769741i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 750.467 0.578111
\(120\) 0 0
\(121\) −109.000 −0.0818933
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1328.16i 0.950352i
\(126\) 0 0
\(127\) −2530.00 −1.76773 −0.883863 0.467746i \(-0.845066\pi\)
−0.883863 + 0.467746i \(0.845066\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 252.982i 0.168726i 0.996435 + 0.0843632i \(0.0268856\pi\)
−0.996435 + 0.0843632i \(0.973114\pi\)
\(132\) 0 0
\(133\) 1186.59i 0.773613i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 675.420 0.421204 0.210602 0.977572i \(-0.432458\pi\)
0.210602 + 0.977572i \(0.432458\pi\)
\(138\) 0 0
\(139\) 237.318i 0.144814i 0.997375 + 0.0724068i \(0.0230680\pi\)
−0.997375 + 0.0724068i \(0.976932\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2251.40 1.31658
\(144\) 0 0
\(145\) 1560.00 0.893455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2940.92i 1.61698i 0.588513 + 0.808488i \(0.299714\pi\)
−0.588513 + 0.808488i \(0.700286\pi\)
\(150\) 0 0
\(151\) 2262.00 1.21907 0.609533 0.792761i \(-0.291357\pi\)
0.609533 + 0.792761i \(0.291357\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 392.122i − 0.203200i
\(156\) 0 0
\(157\) − 1720.56i − 0.874621i −0.899311 0.437310i \(-0.855931\pi\)
0.899311 0.437310i \(-0.144069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1500.93 0.734721
\(162\) 0 0
\(163\) − 2017.21i − 0.969324i −0.874702 0.484662i \(-0.838943\pi\)
0.874702 0.484662i \(-0.161057\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1050.65 0.486838 0.243419 0.969921i \(-0.421731\pi\)
0.243419 + 0.969921i \(0.421731\pi\)
\(168\) 0 0
\(169\) −1323.00 −0.602185
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1423.02i − 0.625379i −0.949855 0.312690i \(-0.898770\pi\)
0.949855 0.312690i \(-0.101230\pi\)
\(174\) 0 0
\(175\) −850.000 −0.367165
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 126.491i − 0.0528178i −0.999651 0.0264089i \(-0.991593\pi\)
0.999651 0.0264089i \(-0.00840719\pi\)
\(180\) 0 0
\(181\) − 59.3296i − 0.0243643i −0.999926 0.0121821i \(-0.996122\pi\)
0.999926 0.0121821i \(-0.00387779\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −375.233 −0.149123
\(186\) 0 0
\(187\) 2847.82i 1.11365i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3752.33 −1.42151 −0.710757 0.703437i \(-0.751648\pi\)
−0.710757 + 0.703437i \(0.751648\pi\)
\(192\) 0 0
\(193\) −1350.00 −0.503498 −0.251749 0.967793i \(-0.581006\pi\)
−0.251749 + 0.967793i \(0.581006\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1448.32i − 0.523801i −0.965095 0.261900i \(-0.915651\pi\)
0.965095 0.261900i \(-0.0843492\pi\)
\(198\) 0 0
\(199\) 3194.00 1.13777 0.568886 0.822416i \(-0.307375\pi\)
0.568886 + 0.822416i \(0.307375\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2466.58i 0.852807i
\(204\) 0 0
\(205\) − 2373.18i − 0.808538i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4502.80 −1.49026
\(210\) 0 0
\(211\) 5458.32i 1.78088i 0.455097 + 0.890442i \(0.349604\pi\)
−0.455097 + 0.890442i \(0.650396\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −750.467 −0.238053
\(216\) 0 0
\(217\) 620.000 0.193955
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 4452.49i − 1.35523i
\(222\) 0 0
\(223\) −5330.00 −1.60055 −0.800276 0.599632i \(-0.795314\pi\)
−0.800276 + 0.599632i \(0.795314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 4768.71i − 1.39432i −0.716915 0.697160i \(-0.754447\pi\)
0.716915 0.697160i \(-0.245553\pi\)
\(228\) 0 0
\(229\) − 3619.10i − 1.04435i −0.852837 0.522177i \(-0.825120\pi\)
0.852837 0.522177i \(-0.174880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −150.093 −0.0422015 −0.0211007 0.999777i \(-0.506717\pi\)
−0.0211007 + 0.999777i \(0.506717\pi\)
\(234\) 0 0
\(235\) − 2847.82i − 0.790516i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2251.40 −0.609334 −0.304667 0.952459i \(-0.598545\pi\)
−0.304667 + 0.952459i \(0.598545\pi\)
\(240\) 0 0
\(241\) −1162.00 −0.310585 −0.155293 0.987869i \(-0.549632\pi\)
−0.155293 + 0.987869i \(0.549632\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1536.87i − 0.400763i
\(246\) 0 0
\(247\) 7040.00 1.81354
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 645.105i − 0.162226i −0.996705 0.0811128i \(-0.974153\pi\)
0.996705 0.0811128i \(-0.0258474\pi\)
\(252\) 0 0
\(253\) 5695.64i 1.41534i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1801.12 −0.437162 −0.218581 0.975819i \(-0.570143\pi\)
−0.218581 + 0.975819i \(0.570143\pi\)
\(258\) 0 0
\(259\) − 593.296i − 0.142338i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6604.11 −1.54839 −0.774195 0.632947i \(-0.781845\pi\)
−0.774195 + 0.632947i \(0.781845\pi\)
\(264\) 0 0
\(265\) 840.000 0.194720
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6052.60i 1.37187i 0.727662 + 0.685936i \(0.240607\pi\)
−0.727662 + 0.685936i \(0.759393\pi\)
\(270\) 0 0
\(271\) −6402.00 −1.43503 −0.717516 0.696542i \(-0.754721\pi\)
−0.717516 + 0.696542i \(0.754721\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 3225.52i − 0.707296i
\(276\) 0 0
\(277\) 2076.54i 0.450422i 0.974310 + 0.225211i \(0.0723072\pi\)
−0.974310 + 0.225211i \(0.927693\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9005.60 −1.91185 −0.955923 0.293616i \(-0.905141\pi\)
−0.955923 + 0.293616i \(0.905141\pi\)
\(282\) 0 0
\(283\) − 5221.00i − 1.09667i −0.836260 0.548333i \(-0.815263\pi\)
0.836260 0.548333i \(-0.184737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3752.33 0.771753
\(288\) 0 0
\(289\) 719.000 0.146346
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5293.65i − 1.05549i −0.849403 0.527745i \(-0.823038\pi\)
0.849403 0.527745i \(-0.176962\pi\)
\(294\) 0 0
\(295\) 4640.00 0.915767
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 8904.97i − 1.72237i
\(300\) 0 0
\(301\) − 1186.59i − 0.227223i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3377.10 0.634007
\(306\) 0 0
\(307\) − 4983.69i − 0.926495i −0.886229 0.463247i \(-0.846684\pi\)
0.886229 0.463247i \(-0.153316\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1500.93 −0.273666 −0.136833 0.990594i \(-0.543692\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(312\) 0 0
\(313\) 6350.00 1.14672 0.573360 0.819304i \(-0.305640\pi\)
0.573360 + 0.819304i \(0.305640\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1739.25i − 0.308158i −0.988059 0.154079i \(-0.950759\pi\)
0.988059 0.154079i \(-0.0492411\pi\)
\(318\) 0 0
\(319\) −9360.00 −1.64282
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8904.97i 1.53401i
\(324\) 0 0
\(325\) 5043.01i 0.860727i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4502.80 0.754551
\(330\) 0 0
\(331\) 3322.46i 0.551718i 0.961198 + 0.275859i \(0.0889623\pi\)
−0.961198 + 0.275859i \(0.911038\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4502.80 −0.734371
\(336\) 0 0
\(337\) −1430.00 −0.231149 −0.115574 0.993299i \(-0.536871\pi\)
−0.115574 + 0.993299i \(0.536871\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2352.73i 0.373630i
\(342\) 0 0
\(343\) 5860.00 0.922479
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10106.6i 1.56355i 0.623559 + 0.781776i \(0.285686\pi\)
−0.623559 + 0.781776i \(0.714314\pi\)
\(348\) 0 0
\(349\) 1127.26i 0.172897i 0.996256 + 0.0864484i \(0.0275518\pi\)
−0.996256 + 0.0864484i \(0.972448\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1350.84 −0.203677 −0.101838 0.994801i \(-0.532472\pi\)
−0.101838 + 0.994801i \(0.532472\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12007.5 1.76526 0.882632 0.470065i \(-0.155769\pi\)
0.882632 + 0.470065i \(0.155769\pi\)
\(360\) 0 0
\(361\) −7221.00 −1.05278
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 189.737i 0.0272090i
\(366\) 0 0
\(367\) −5070.00 −0.721122 −0.360561 0.932736i \(-0.617415\pi\)
−0.360561 + 0.932736i \(0.617415\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1328.16i 0.185861i
\(372\) 0 0
\(373\) 2432.51i 0.337670i 0.985644 + 0.168835i \(0.0540004\pi\)
−0.985644 + 0.168835i \(0.946000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14634.1 1.99919
\(378\) 0 0
\(379\) 7712.85i 1.04534i 0.852536 + 0.522668i \(0.175063\pi\)
−0.852536 + 0.522668i \(0.824937\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5853.64 0.780958 0.390479 0.920612i \(-0.372309\pi\)
0.390479 + 0.920612i \(0.372309\pi\)
\(384\) 0 0
\(385\) −2400.00 −0.317702
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2156.67i 0.281099i 0.990074 + 0.140550i \(0.0448870\pi\)
−0.990074 + 0.140550i \(0.955113\pi\)
\(390\) 0 0
\(391\) 11264.0 1.45689
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 594.508i − 0.0757290i
\(396\) 0 0
\(397\) − 12162.6i − 1.53759i −0.639498 0.768793i \(-0.720858\pi\)
0.639498 0.768793i \(-0.279142\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3377.10 0.420559 0.210280 0.977641i \(-0.432563\pi\)
0.210280 + 0.977641i \(0.432563\pi\)
\(402\) 0 0
\(403\) − 3678.43i − 0.454680i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2251.40 0.274196
\(408\) 0 0
\(409\) 3526.00 0.426282 0.213141 0.977021i \(-0.431631\pi\)
0.213141 + 0.977021i \(0.431631\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7336.48i 0.874104i
\(414\) 0 0
\(415\) −4240.00 −0.501526
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2466.58i 0.287590i 0.989608 + 0.143795i \(0.0459306\pi\)
−0.989608 + 0.143795i \(0.954069\pi\)
\(420\) 0 0
\(421\) − 13586.5i − 1.57284i −0.617694 0.786418i \(-0.711933\pi\)
0.617694 0.786418i \(-0.288067\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6378.97 −0.728059
\(426\) 0 0
\(427\) 5339.66i 0.605163i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6754.20 0.754845 0.377423 0.926041i \(-0.376810\pi\)
0.377423 + 0.926041i \(0.376810\pi\)
\(432\) 0 0
\(433\) 7790.00 0.864581 0.432290 0.901734i \(-0.357706\pi\)
0.432290 + 0.901734i \(0.357706\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17809.9i 1.94958i
\(438\) 0 0
\(439\) 9354.00 1.01695 0.508476 0.861076i \(-0.330209\pi\)
0.508476 + 0.861076i \(0.330209\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 6488.99i − 0.695940i −0.937506 0.347970i \(-0.886871\pi\)
0.937506 0.347970i \(-0.113129\pi\)
\(444\) 0 0
\(445\) 4746.37i 0.505617i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10131.3 1.06487 0.532434 0.846472i \(-0.321278\pi\)
0.532434 + 0.846472i \(0.321278\pi\)
\(450\) 0 0
\(451\) 14239.1i 1.48668i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3752.33 0.386620
\(456\) 0 0
\(457\) −12010.0 −1.22933 −0.614665 0.788788i \(-0.710709\pi\)
−0.614665 + 0.788788i \(0.710709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 9316.07i − 0.941199i −0.882347 0.470599i \(-0.844038\pi\)
0.882347 0.470599i \(-0.155962\pi\)
\(462\) 0 0
\(463\) −14770.0 −1.48255 −0.741274 0.671202i \(-0.765778\pi\)
−0.741274 + 0.671202i \(0.765778\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8740.54i 0.866089i 0.901372 + 0.433045i \(0.142561\pi\)
−0.901372 + 0.433045i \(0.857439\pi\)
\(468\) 0 0
\(469\) − 7119.55i − 0.700960i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4502.80 0.437714
\(474\) 0 0
\(475\) − 10086.0i − 0.974271i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3001.87 −0.286344 −0.143172 0.989698i \(-0.545730\pi\)
−0.143172 + 0.989698i \(0.545730\pi\)
\(480\) 0 0
\(481\) −3520.00 −0.333676
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 822.192i 0.0769770i
\(486\) 0 0
\(487\) 9910.00 0.922105 0.461052 0.887373i \(-0.347472\pi\)
0.461052 + 0.887373i \(0.347472\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 3389.96i − 0.311582i −0.987790 0.155791i \(-0.950207\pi\)
0.987790 0.155791i \(-0.0497927\pi\)
\(492\) 0 0
\(493\) 18510.8i 1.69105i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 4271.73i − 0.383224i −0.981471 0.191612i \(-0.938628\pi\)
0.981471 0.191612i \(-0.0613716\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 900.560 0.0798290 0.0399145 0.999203i \(-0.487291\pi\)
0.0399145 + 0.999203i \(0.487291\pi\)
\(504\) 0 0
\(505\) 3560.00 0.313699
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 853.815i − 0.0743510i −0.999309 0.0371755i \(-0.988164\pi\)
0.999309 0.0371755i \(-0.0118361\pi\)
\(510\) 0 0
\(511\) −300.000 −0.0259711
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3605.00i 0.308457i
\(516\) 0 0
\(517\) 17086.9i 1.45354i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7879.90 −0.662619 −0.331310 0.943522i \(-0.607490\pi\)
−0.331310 + 0.943522i \(0.607490\pi\)
\(522\) 0 0
\(523\) − 10323.3i − 0.863114i −0.902086 0.431557i \(-0.857964\pi\)
0.902086 0.431557i \(-0.142036\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4652.89 0.384598
\(528\) 0 0
\(529\) 10361.0 0.851566
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 22262.4i − 1.80918i
\(534\) 0 0
\(535\) −8160.00 −0.659416
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9221.20i 0.736893i
\(540\) 0 0
\(541\) − 15603.7i − 1.24003i −0.784591 0.620014i \(-0.787127\pi\)
0.784591 0.620014i \(-0.212873\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10881.8 −0.855273
\(546\) 0 0
\(547\) − 2254.52i − 0.176228i −0.996110 0.0881138i \(-0.971916\pi\)
0.996110 0.0881138i \(-0.0280839\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29268.2 −2.26292
\(552\) 0 0
\(553\) 940.000 0.0722837
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 284.605i − 0.0216501i −0.999941 0.0108250i \(-0.996554\pi\)
0.999941 0.0108250i \(-0.00344579\pi\)
\(558\) 0 0
\(559\) −7040.00 −0.532666
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 18328.6i − 1.37204i −0.727584 0.686018i \(-0.759357\pi\)
0.727584 0.686018i \(-0.240643\pi\)
\(564\) 0 0
\(565\) 8543.46i 0.636152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7879.90 −0.580567 −0.290283 0.956941i \(-0.593750\pi\)
−0.290283 + 0.956941i \(0.593750\pi\)
\(570\) 0 0
\(571\) − 8306.14i − 0.608759i −0.952551 0.304379i \(-0.901551\pi\)
0.952551 0.304379i \(-0.0984491\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12757.9 −0.925291
\(576\) 0 0
\(577\) −6330.00 −0.456709 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 6704.03i − 0.478709i
\(582\) 0 0
\(583\) −5040.00 −0.358037
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1922.66i 0.135191i 0.997713 + 0.0675953i \(0.0215327\pi\)
−0.997713 + 0.0675953i \(0.978467\pi\)
\(588\) 0 0
\(589\) 7356.87i 0.514660i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10356.4 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(594\) 0 0
\(595\) 4746.37i 0.327029i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 750.467 0.0511907 0.0255954 0.999672i \(-0.491852\pi\)
0.0255954 + 0.999672i \(0.491852\pi\)
\(600\) 0 0
\(601\) 18578.0 1.26092 0.630460 0.776222i \(-0.282866\pi\)
0.630460 + 0.776222i \(0.282866\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 689.377i − 0.0463259i
\(606\) 0 0
\(607\) 8030.00 0.536948 0.268474 0.963287i \(-0.413481\pi\)
0.268474 + 0.963287i \(0.413481\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 26714.9i − 1.76885i
\(612\) 0 0
\(613\) 3856.42i 0.254094i 0.991897 + 0.127047i \(0.0405499\pi\)
−0.991897 + 0.127047i \(0.959450\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −300.187 −0.0195868 −0.00979340 0.999952i \(-0.503117\pi\)
−0.00979340 + 0.999952i \(0.503117\pi\)
\(618\) 0 0
\(619\) 1423.91i 0.0924584i 0.998931 + 0.0462292i \(0.0147205\pi\)
−0.998931 + 0.0462292i \(0.985280\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7504.67 −0.482613
\(624\) 0 0
\(625\) 2225.00 0.142400
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4452.49i − 0.282245i
\(630\) 0 0
\(631\) 12902.0 0.813979 0.406989 0.913433i \(-0.366579\pi\)
0.406989 + 0.913433i \(0.366579\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 16001.1i − 0.999977i
\(636\) 0 0
\(637\) − 14417.1i − 0.896744i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19887.4 −1.22543 −0.612717 0.790302i \(-0.709924\pi\)
−0.612717 + 0.790302i \(0.709924\pi\)
\(642\) 0 0
\(643\) − 29783.5i − 1.82666i −0.407216 0.913332i \(-0.633500\pi\)
0.407216 0.913332i \(-0.366500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13958.7 0.848180 0.424090 0.905620i \(-0.360594\pi\)
0.424090 + 0.905620i \(0.360594\pi\)
\(648\) 0 0
\(649\) −27840.0 −1.68385
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18461.4i 1.10635i 0.833064 + 0.553177i \(0.186585\pi\)
−0.833064 + 0.553177i \(0.813415\pi\)
\(654\) 0 0
\(655\) −1600.00 −0.0954461
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5160.84i 0.305065i 0.988298 + 0.152532i \(0.0487428\pi\)
−0.988298 + 0.152532i \(0.951257\pi\)
\(660\) 0 0
\(661\) − 13467.8i − 0.792492i −0.918144 0.396246i \(-0.870313\pi\)
0.918144 0.396246i \(-0.129687\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7504.67 −0.437622
\(666\) 0 0
\(667\) 37021.7i 2.14915i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20262.6 −1.16577
\(672\) 0 0
\(673\) −15010.0 −0.859722 −0.429861 0.902895i \(-0.641437\pi\)
−0.429861 + 0.902895i \(0.641437\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6280.28i 0.356530i 0.983983 + 0.178265i \(0.0570485\pi\)
−0.983983 + 0.178265i \(0.942952\pi\)
\(678\) 0 0
\(679\) −1300.00 −0.0734748
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12510.0i 0.700850i 0.936591 + 0.350425i \(0.113963\pi\)
−0.936591 + 0.350425i \(0.886037\pi\)
\(684\) 0 0
\(685\) 4271.73i 0.238269i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7879.90 0.435704
\(690\) 0 0
\(691\) 28359.5i 1.56128i 0.624978 + 0.780642i \(0.285108\pi\)
−0.624978 + 0.780642i \(0.714892\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1500.93 −0.0819189
\(696\) 0 0
\(697\) 28160.0 1.53032
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 19802.2i − 1.06693i −0.845822 0.533465i \(-0.820890\pi\)
0.845822 0.533465i \(-0.179110\pi\)
\(702\) 0 0
\(703\) 7040.00 0.377694
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5628.85i 0.299427i
\(708\) 0 0
\(709\) − 12874.5i − 0.681964i −0.940070 0.340982i \(-0.889240\pi\)
0.940070 0.340982i \(-0.110760\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9305.78 0.488786
\(714\) 0 0
\(715\) 14239.1i 0.744772i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1500.93 −0.0778517 −0.0389258 0.999242i \(-0.512394\pi\)
−0.0389258 + 0.999242i \(0.512394\pi\)
\(720\) 0 0
\(721\) −5700.00 −0.294423
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 20965.9i − 1.07401i
\(726\) 0 0
\(727\) −23850.0 −1.21671 −0.608355 0.793665i \(-0.708170\pi\)
−0.608355 + 0.793665i \(0.708170\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 8904.97i − 0.450564i
\(732\) 0 0
\(733\) 2195.19i 0.110616i 0.998469 + 0.0553079i \(0.0176140\pi\)
−0.998469 + 0.0553079i \(0.982386\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27016.8 1.35031
\(738\) 0 0
\(739\) 2610.50i 0.129944i 0.997887 + 0.0649722i \(0.0206959\pi\)
−0.997887 + 0.0649722i \(0.979304\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2851.77 0.140809 0.0704047 0.997519i \(-0.477571\pi\)
0.0704047 + 0.997519i \(0.477571\pi\)
\(744\) 0 0
\(745\) −18600.0 −0.914700
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12902.1i − 0.629416i
\(750\) 0 0
\(751\) 20578.0 0.999869 0.499935 0.866063i \(-0.333357\pi\)
0.499935 + 0.866063i \(0.333357\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14306.1i 0.689608i
\(756\) 0 0
\(757\) − 20468.7i − 0.982758i −0.870946 0.491379i \(-0.836493\pi\)
0.870946 0.491379i \(-0.163507\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22138.8 −1.05457 −0.527286 0.849688i \(-0.676790\pi\)
−0.527286 + 0.849688i \(0.676790\pi\)
\(762\) 0 0
\(763\) − 17205.6i − 0.816362i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 43527.1 2.04911
\(768\) 0 0
\(769\) −6854.00 −0.321406 −0.160703 0.987003i \(-0.551376\pi\)
−0.160703 + 0.987003i \(0.551376\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38902.3i 1.81012i 0.425288 + 0.905058i \(0.360173\pi\)
−0.425288 + 0.905058i \(0.639827\pi\)
\(774\) 0 0
\(775\) −5270.00 −0.244263
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 44524.9i 2.04784i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10881.8 0.494760
\(786\) 0 0
\(787\) − 13171.2i − 0.596571i −0.954477 0.298286i \(-0.903585\pi\)
0.954477 0.298286i \(-0.0964148\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13508.4 −0.607210
\(792\) 0 0
\(793\) 31680.0 1.41865
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13730.6i 0.610242i 0.952314 + 0.305121i \(0.0986970\pi\)
−0.952314 + 0.305121i \(0.901303\pi\)
\(798\) 0 0
\(799\) 33792.0 1.49621
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1138.42i − 0.0500298i
\(804\) 0 0
\(805\) 9492.73i 0.415621i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30393.9 1.32088 0.660440 0.750879i \(-0.270370\pi\)
0.660440 + 0.750879i \(0.270370\pi\)
\(810\) 0 0
\(811\) − 27647.6i − 1.19709i −0.801090 0.598544i \(-0.795746\pi\)
0.801090 0.598544i \(-0.204254\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12757.9 0.548332
\(816\) 0 0
\(817\) 14080.0 0.602934
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26303.8i 1.11816i 0.829114 + 0.559080i \(0.188846\pi\)
−0.829114 + 0.559080i \(0.811154\pi\)
\(822\) 0 0
\(823\) −22970.0 −0.972884 −0.486442 0.873713i \(-0.661706\pi\)
−0.486442 + 0.873713i \(0.661706\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 7665.36i − 0.322310i −0.986929 0.161155i \(-0.948478\pi\)
0.986929 0.161155i \(-0.0515220\pi\)
\(828\) 0 0
\(829\) 17383.6i 0.728295i 0.931341 + 0.364147i \(0.118640\pi\)
−0.931341 + 0.364147i \(0.881360\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18236.3 0.758525
\(834\) 0 0
\(835\) 6644.91i 0.275397i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33020.5 1.35875 0.679377 0.733789i \(-0.262250\pi\)
0.679377 + 0.733789i \(0.262250\pi\)
\(840\) 0 0
\(841\) −36451.0 −1.49457
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 8367.39i − 0.340647i
\(846\) 0 0
\(847\) 1090.00 0.0442182
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 8904.97i − 0.358706i
\(852\) 0 0
\(853\) 46099.1i 1.85041i 0.379463 + 0.925207i \(0.376109\pi\)
−0.379463 + 0.925207i \(0.623891\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44352.6 1.76786 0.883929 0.467620i \(-0.154889\pi\)
0.883929 + 0.467620i \(0.154889\pi\)
\(858\) 0 0
\(859\) − 7712.85i − 0.306355i −0.988199 0.153177i \(-0.951049\pi\)
0.988199 0.153177i \(-0.0489506\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21163.2 0.834765 0.417383 0.908731i \(-0.362948\pi\)
0.417383 + 0.908731i \(0.362948\pi\)
\(864\) 0 0
\(865\) 9000.00 0.353768
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3567.05i 0.139245i
\(870\) 0 0
\(871\) −42240.0 −1.64322
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 13281.6i − 0.513142i
\(876\) 0 0
\(877\) − 17146.3i − 0.660191i −0.943947 0.330096i \(-0.892919\pi\)
0.943947 0.330096i \(-0.107081\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42026.1 −1.60715 −0.803573 0.595206i \(-0.797071\pi\)
−0.803573 + 0.595206i \(0.797071\pi\)
\(882\) 0 0
\(883\) − 4865.03i − 0.185415i −0.995693 0.0927073i \(-0.970448\pi\)
0.995693 0.0927073i \(-0.0295521\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11707.3 0.443170 0.221585 0.975141i \(-0.428877\pi\)
0.221585 + 0.975141i \(0.428877\pi\)
\(888\) 0 0
\(889\) 25300.0 0.954482
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 53429.8i 2.00220i
\(894\) 0 0
\(895\) 800.000 0.0298783
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15292.8i 0.567344i
\(900\) 0 0
\(901\) 9967.37i 0.368547i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 375.233 0.0137825
\(906\) 0 0
\(907\) − 12933.9i − 0.473497i −0.971571 0.236748i \(-0.923918\pi\)
0.971571 0.236748i \(-0.0760817\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20262.6 −0.736915 −0.368458 0.929645i \(-0.620114\pi\)
−0.368458 + 0.929645i \(0.620114\pi\)
\(912\) 0 0
\(913\) 25440.0 0.922170
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2529.82i − 0.0911037i
\(918\) 0 0
\(919\) −22746.0 −0.816454 −0.408227 0.912880i \(-0.633853\pi\)
−0.408227 + 0.912880i \(0.633853\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 5043.01i 0.179258i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13883.6 0.490320 0.245160 0.969483i \(-0.421160\pi\)
0.245160 + 0.969483i \(0.421160\pi\)
\(930\) 0 0
\(931\) 28834.2i 1.01504i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18011.2 −0.629978
\(936\) 0 0
\(937\) −27850.0 −0.970992 −0.485496 0.874239i \(-0.661361\pi\)
−0.485496 + 0.874239i \(0.661361\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 36789.9i − 1.27451i −0.770651 0.637257i \(-0.780069\pi\)
0.770651 0.637257i \(-0.219931\pi\)
\(942\) 0 0
\(943\) 56320.0 1.94489
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42728.7i 1.46620i 0.680118 + 0.733102i \(0.261928\pi\)
−0.680118 + 0.733102i \(0.738072\pi\)
\(948\) 0 0
\(949\) 1779.89i 0.0608826i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24990.5 −0.849447 −0.424723 0.905323i \(-0.639629\pi\)
−0.424723 + 0.905323i \(0.639629\pi\)
\(954\) 0 0
\(955\) − 23731.8i − 0.804130i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6754.20 −0.227429
\(960\) 0 0
\(961\) −25947.0 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 8538.15i − 0.284822i
\(966\) 0 0
\(967\) −10550.0 −0.350843 −0.175421 0.984493i \(-0.556129\pi\)
−0.175421 + 0.984493i \(0.556129\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 53012.4i − 1.75206i −0.482257 0.876030i \(-0.660183\pi\)
0.482257 0.876030i \(-0.339817\pi\)
\(972\) 0 0
\(973\) − 2373.18i − 0.0781920i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34596.5 1.13290 0.566448 0.824097i \(-0.308317\pi\)
0.566448 + 0.824097i \(0.308317\pi\)
\(978\) 0 0
\(979\) − 28478.2i − 0.929691i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33921.1 1.10063 0.550313 0.834959i \(-0.314509\pi\)
0.550313 + 0.834959i \(0.314509\pi\)
\(984\) 0 0
\(985\) 9160.00 0.296306
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 17809.9i − 0.572622i
\(990\) 0 0
\(991\) 8818.00 0.282657 0.141328 0.989963i \(-0.454863\pi\)
0.141328 + 0.989963i \(0.454863\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20200.6i 0.643621i
\(996\) 0 0
\(997\) − 25096.4i − 0.797203i −0.917124 0.398602i \(-0.869496\pi\)
0.917124 0.398602i \(-0.130504\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.4.d.c.145.4 4
3.2 odd 2 inner 288.4.d.c.145.2 4
4.3 odd 2 72.4.d.c.37.2 yes 4
8.3 odd 2 72.4.d.c.37.1 4
8.5 even 2 inner 288.4.d.c.145.1 4
12.11 even 2 72.4.d.c.37.3 yes 4
16.3 odd 4 2304.4.a.bx.1.3 4
16.5 even 4 2304.4.a.cc.1.2 4
16.11 odd 4 2304.4.a.bx.1.2 4
16.13 even 4 2304.4.a.cc.1.3 4
24.5 odd 2 inner 288.4.d.c.145.3 4
24.11 even 2 72.4.d.c.37.4 yes 4
48.5 odd 4 2304.4.a.cc.1.4 4
48.11 even 4 2304.4.a.bx.1.4 4
48.29 odd 4 2304.4.a.cc.1.1 4
48.35 even 4 2304.4.a.bx.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.d.c.37.1 4 8.3 odd 2
72.4.d.c.37.2 yes 4 4.3 odd 2
72.4.d.c.37.3 yes 4 12.11 even 2
72.4.d.c.37.4 yes 4 24.11 even 2
288.4.d.c.145.1 4 8.5 even 2 inner
288.4.d.c.145.2 4 3.2 odd 2 inner
288.4.d.c.145.3 4 24.5 odd 2 inner
288.4.d.c.145.4 4 1.1 even 1 trivial
2304.4.a.bx.1.1 4 48.35 even 4
2304.4.a.bx.1.2 4 16.11 odd 4
2304.4.a.bx.1.3 4 16.3 odd 4
2304.4.a.bx.1.4 4 48.11 even 4
2304.4.a.cc.1.1 4 48.29 odd 4
2304.4.a.cc.1.2 4 16.5 even 4
2304.4.a.cc.1.3 4 16.13 even 4
2304.4.a.cc.1.4 4 48.5 odd 4