Properties

Label 2304.4.a.cc.1.4
Level $2304$
Weight $4$
Character 2304.1
Self dual yes
Analytic conductor $135.940$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,4,Mod(1,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.940400653\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{10}, \sqrt{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.764069\) of defining polynomial
Character \(\chi\) \(=\) 2304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.32456 q^{5} +10.0000 q^{7} -37.9473 q^{11} +59.3296 q^{13} +75.0467 q^{17} -118.659 q^{19} -150.093 q^{23} -85.0000 q^{25} +246.658 q^{29} -62.0000 q^{31} +63.2456 q^{35} -59.3296 q^{37} -375.233 q^{41} -118.659 q^{43} +450.280 q^{47} -243.000 q^{49} -132.816 q^{53} -240.000 q^{55} -733.648 q^{59} -533.966 q^{61} +375.233 q^{65} +711.955 q^{67} -30.0000 q^{73} -379.473 q^{77} -94.0000 q^{79} -670.403 q^{83} +474.637 q^{85} +750.467 q^{89} +593.296 q^{91} -750.467 q^{95} +130.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 40 q^{7} - 340 q^{25} - 248 q^{31} - 972 q^{49} - 960 q^{55} - 120 q^{73} - 376 q^{79} + 520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.32456 0.565685 0.282843 0.959166i \(-0.408723\pi\)
0.282843 + 0.959166i \(0.408723\pi\)
\(6\) 0 0
\(7\) 10.0000 0.539949 0.269975 0.962867i \(-0.412985\pi\)
0.269975 + 0.962867i \(0.412985\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −37.9473 −1.04014 −0.520071 0.854123i \(-0.674094\pi\)
−0.520071 + 0.854123i \(0.674094\pi\)
\(12\) 0 0
\(13\) 59.3296 1.26577 0.632887 0.774244i \(-0.281870\pi\)
0.632887 + 0.774244i \(0.281870\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 75.0467 1.07068 0.535338 0.844638i \(-0.320184\pi\)
0.535338 + 0.844638i \(0.320184\pi\)
\(18\) 0 0
\(19\) −118.659 −1.43275 −0.716376 0.697715i \(-0.754200\pi\)
−0.716376 + 0.697715i \(0.754200\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −150.093 −1.36072 −0.680361 0.732877i \(-0.738177\pi\)
−0.680361 + 0.732877i \(0.738177\pi\)
\(24\) 0 0
\(25\) −85.0000 −0.680000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 246.658 1.57942 0.789710 0.613480i \(-0.210231\pi\)
0.789710 + 0.613480i \(0.210231\pi\)
\(30\) 0 0
\(31\) −62.0000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 63.2456 0.305441
\(36\) 0 0
\(37\) −59.3296 −0.263614 −0.131807 0.991275i \(-0.542078\pi\)
−0.131807 + 0.991275i \(0.542078\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −375.233 −1.42931 −0.714654 0.699479i \(-0.753416\pi\)
−0.714654 + 0.699479i \(0.753416\pi\)
\(42\) 0 0
\(43\) −118.659 −0.420822 −0.210411 0.977613i \(-0.567480\pi\)
−0.210411 + 0.977613i \(0.567480\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 450.280 1.39745 0.698724 0.715391i \(-0.253751\pi\)
0.698724 + 0.715391i \(0.253751\pi\)
\(48\) 0 0
\(49\) −243.000 −0.708455
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −132.816 −0.344220 −0.172110 0.985078i \(-0.555058\pi\)
−0.172110 + 0.985078i \(0.555058\pi\)
\(54\) 0 0
\(55\) −240.000 −0.588393
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −733.648 −1.61886 −0.809431 0.587215i \(-0.800224\pi\)
−0.809431 + 0.587215i \(0.800224\pi\)
\(60\) 0 0
\(61\) −533.966 −1.12078 −0.560388 0.828230i \(-0.689348\pi\)
−0.560388 + 0.828230i \(0.689348\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 375.233 0.716030
\(66\) 0 0
\(67\) 711.955 1.29820 0.649098 0.760705i \(-0.275146\pi\)
0.649098 + 0.760705i \(0.275146\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −30.0000 −0.0480991 −0.0240496 0.999711i \(-0.507656\pi\)
−0.0240496 + 0.999711i \(0.507656\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −379.473 −0.561623
\(78\) 0 0
\(79\) −94.0000 −0.133871 −0.0669356 0.997757i \(-0.521322\pi\)
−0.0669356 + 0.997757i \(0.521322\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −670.403 −0.886582 −0.443291 0.896378i \(-0.646189\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(84\) 0 0
\(85\) 474.637 0.605666
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 750.467 0.893812 0.446906 0.894581i \(-0.352526\pi\)
0.446906 + 0.894581i \(0.352526\pi\)
\(90\) 0 0
\(91\) 593.296 0.683454
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −750.467 −0.810487
\(96\) 0 0
\(97\) 130.000 0.136077 0.0680387 0.997683i \(-0.478326\pi\)
0.0680387 + 0.997683i \(0.478326\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −562.885 −0.554546 −0.277273 0.960791i \(-0.589431\pi\)
−0.277273 + 0.960791i \(0.589431\pi\)
\(102\) 0 0
\(103\) −570.000 −0.545279 −0.272640 0.962116i \(-0.587897\pi\)
−0.272640 + 0.962116i \(0.587897\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1290.21 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(108\) 0 0
\(109\) 1720.56 1.51192 0.755961 0.654616i \(-0.227170\pi\)
0.755961 + 0.654616i \(0.227170\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1350.84 −1.12457 −0.562285 0.826944i \(-0.690077\pi\)
−0.562285 + 0.826944i \(0.690077\pi\)
\(114\) 0 0
\(115\) −949.273 −0.769741
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 750.467 0.578111
\(120\) 0 0
\(121\) 109.000 0.0818933
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1328.16 −0.950352
\(126\) 0 0
\(127\) −2530.00 −1.76773 −0.883863 0.467746i \(-0.845066\pi\)
−0.883863 + 0.467746i \(0.845066\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −252.982 −0.168726 −0.0843632 0.996435i \(-0.526886\pi\)
−0.0843632 + 0.996435i \(0.526886\pi\)
\(132\) 0 0
\(133\) −1186.59 −0.773613
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 675.420 0.421204 0.210602 0.977572i \(-0.432458\pi\)
0.210602 + 0.977572i \(0.432458\pi\)
\(138\) 0 0
\(139\) −237.318 −0.144814 −0.0724068 0.997375i \(-0.523068\pi\)
−0.0724068 + 0.997375i \(0.523068\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2251.40 −1.31658
\(144\) 0 0
\(145\) 1560.00 0.893455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2940.92 1.61698 0.808488 0.588513i \(-0.200286\pi\)
0.808488 + 0.588513i \(0.200286\pi\)
\(150\) 0 0
\(151\) −2262.00 −1.21907 −0.609533 0.792761i \(-0.708643\pi\)
−0.609533 + 0.792761i \(0.708643\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −392.122 −0.203200
\(156\) 0 0
\(157\) −1720.56 −0.874621 −0.437310 0.899311i \(-0.644069\pi\)
−0.437310 + 0.899311i \(0.644069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1500.93 −0.734721
\(162\) 0 0
\(163\) −2017.21 −0.969324 −0.484662 0.874702i \(-0.661057\pi\)
−0.484662 + 0.874702i \(0.661057\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1050.65 0.486838 0.243419 0.969921i \(-0.421731\pi\)
0.243419 + 0.969921i \(0.421731\pi\)
\(168\) 0 0
\(169\) 1323.00 0.602185
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1423.02 0.625379 0.312690 0.949855i \(-0.398770\pi\)
0.312690 + 0.949855i \(0.398770\pi\)
\(174\) 0 0
\(175\) −850.000 −0.367165
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 126.491 0.0528178 0.0264089 0.999651i \(-0.491593\pi\)
0.0264089 + 0.999651i \(0.491593\pi\)
\(180\) 0 0
\(181\) 59.3296 0.0243643 0.0121821 0.999926i \(-0.496122\pi\)
0.0121821 + 0.999926i \(0.496122\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −375.233 −0.149123
\(186\) 0 0
\(187\) −2847.82 −1.11365
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3752.33 1.42151 0.710757 0.703437i \(-0.248352\pi\)
0.710757 + 0.703437i \(0.248352\pi\)
\(192\) 0 0
\(193\) −1350.00 −0.503498 −0.251749 0.967793i \(-0.581006\pi\)
−0.251749 + 0.967793i \(0.581006\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1448.32 −0.523801 −0.261900 0.965095i \(-0.584349\pi\)
−0.261900 + 0.965095i \(0.584349\pi\)
\(198\) 0 0
\(199\) −3194.00 −1.13777 −0.568886 0.822416i \(-0.692625\pi\)
−0.568886 + 0.822416i \(0.692625\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2466.58 0.852807
\(204\) 0 0
\(205\) −2373.18 −0.808538
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4502.80 1.49026
\(210\) 0 0
\(211\) 5458.32 1.78088 0.890442 0.455097i \(-0.150396\pi\)
0.890442 + 0.455097i \(0.150396\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −750.467 −0.238053
\(216\) 0 0
\(217\) −620.000 −0.193955
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4452.49 1.35523
\(222\) 0 0
\(223\) −5330.00 −1.60055 −0.800276 0.599632i \(-0.795314\pi\)
−0.800276 + 0.599632i \(0.795314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4768.71 1.39432 0.697160 0.716915i \(-0.254447\pi\)
0.697160 + 0.716915i \(0.254447\pi\)
\(228\) 0 0
\(229\) 3619.10 1.04435 0.522177 0.852837i \(-0.325120\pi\)
0.522177 + 0.852837i \(0.325120\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −150.093 −0.0422015 −0.0211007 0.999777i \(-0.506717\pi\)
−0.0211007 + 0.999777i \(0.506717\pi\)
\(234\) 0 0
\(235\) 2847.82 0.790516
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2251.40 0.609334 0.304667 0.952459i \(-0.401455\pi\)
0.304667 + 0.952459i \(0.401455\pi\)
\(240\) 0 0
\(241\) −1162.00 −0.310585 −0.155293 0.987869i \(-0.549632\pi\)
−0.155293 + 0.987869i \(0.549632\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1536.87 −0.400763
\(246\) 0 0
\(247\) −7040.00 −1.81354
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −645.105 −0.162226 −0.0811128 0.996705i \(-0.525847\pi\)
−0.0811128 + 0.996705i \(0.525847\pi\)
\(252\) 0 0
\(253\) 5695.64 1.41534
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1801.12 0.437162 0.218581 0.975819i \(-0.429857\pi\)
0.218581 + 0.975819i \(0.429857\pi\)
\(258\) 0 0
\(259\) −593.296 −0.142338
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6604.11 −1.54839 −0.774195 0.632947i \(-0.781845\pi\)
−0.774195 + 0.632947i \(0.781845\pi\)
\(264\) 0 0
\(265\) −840.000 −0.194720
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6052.60 −1.37187 −0.685936 0.727662i \(-0.740607\pi\)
−0.685936 + 0.727662i \(0.740607\pi\)
\(270\) 0 0
\(271\) −6402.00 −1.43503 −0.717516 0.696542i \(-0.754721\pi\)
−0.717516 + 0.696542i \(0.754721\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3225.52 0.707296
\(276\) 0 0
\(277\) −2076.54 −0.450422 −0.225211 0.974310i \(-0.572307\pi\)
−0.225211 + 0.974310i \(0.572307\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9005.60 −1.91185 −0.955923 0.293616i \(-0.905141\pi\)
−0.955923 + 0.293616i \(0.905141\pi\)
\(282\) 0 0
\(283\) 5221.00 1.09667 0.548333 0.836260i \(-0.315263\pi\)
0.548333 + 0.836260i \(0.315263\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3752.33 −0.771753
\(288\) 0 0
\(289\) 719.000 0.146346
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5293.65 −1.05549 −0.527745 0.849403i \(-0.676962\pi\)
−0.527745 + 0.849403i \(0.676962\pi\)
\(294\) 0 0
\(295\) −4640.00 −0.915767
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8904.97 −1.72237
\(300\) 0 0
\(301\) −1186.59 −0.227223
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3377.10 −0.634007
\(306\) 0 0
\(307\) −4983.69 −0.926495 −0.463247 0.886229i \(-0.653316\pi\)
−0.463247 + 0.886229i \(0.653316\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1500.93 −0.273666 −0.136833 0.990594i \(-0.543692\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(312\) 0 0
\(313\) −6350.00 −1.14672 −0.573360 0.819304i \(-0.694360\pi\)
−0.573360 + 0.819304i \(0.694360\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1739.25 0.308158 0.154079 0.988059i \(-0.450759\pi\)
0.154079 + 0.988059i \(0.450759\pi\)
\(318\) 0 0
\(319\) −9360.00 −1.64282
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8904.97 −1.53401
\(324\) 0 0
\(325\) −5043.01 −0.860727
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4502.80 0.754551
\(330\) 0 0
\(331\) −3322.46 −0.551718 −0.275859 0.961198i \(-0.588962\pi\)
−0.275859 + 0.961198i \(0.588962\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4502.80 0.734371
\(336\) 0 0
\(337\) −1430.00 −0.231149 −0.115574 0.993299i \(-0.536871\pi\)
−0.115574 + 0.993299i \(0.536871\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2352.73 0.373630
\(342\) 0 0
\(343\) −5860.00 −0.922479
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10106.6 1.56355 0.781776 0.623559i \(-0.214314\pi\)
0.781776 + 0.623559i \(0.214314\pi\)
\(348\) 0 0
\(349\) 1127.26 0.172897 0.0864484 0.996256i \(-0.472448\pi\)
0.0864484 + 0.996256i \(0.472448\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1350.84 0.203677 0.101838 0.994801i \(-0.467528\pi\)
0.101838 + 0.994801i \(0.467528\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12007.5 1.76526 0.882632 0.470065i \(-0.155769\pi\)
0.882632 + 0.470065i \(0.155769\pi\)
\(360\) 0 0
\(361\) 7221.00 1.05278
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −189.737 −0.0272090
\(366\) 0 0
\(367\) −5070.00 −0.721122 −0.360561 0.932736i \(-0.617415\pi\)
−0.360561 + 0.932736i \(0.617415\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1328.16 −0.185861
\(372\) 0 0
\(373\) −2432.51 −0.337670 −0.168835 0.985644i \(-0.554000\pi\)
−0.168835 + 0.985644i \(0.554000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14634.1 1.99919
\(378\) 0 0
\(379\) −7712.85 −1.04534 −0.522668 0.852536i \(-0.675063\pi\)
−0.522668 + 0.852536i \(0.675063\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5853.64 −0.780958 −0.390479 0.920612i \(-0.627691\pi\)
−0.390479 + 0.920612i \(0.627691\pi\)
\(384\) 0 0
\(385\) −2400.00 −0.317702
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2156.67 0.281099 0.140550 0.990074i \(-0.455113\pi\)
0.140550 + 0.990074i \(0.455113\pi\)
\(390\) 0 0
\(391\) −11264.0 −1.45689
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −594.508 −0.0757290
\(396\) 0 0
\(397\) −12162.6 −1.53759 −0.768793 0.639498i \(-0.779142\pi\)
−0.768793 + 0.639498i \(0.779142\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3377.10 −0.420559 −0.210280 0.977641i \(-0.567437\pi\)
−0.210280 + 0.977641i \(0.567437\pi\)
\(402\) 0 0
\(403\) −3678.43 −0.454680
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2251.40 0.274196
\(408\) 0 0
\(409\) −3526.00 −0.426282 −0.213141 0.977021i \(-0.568369\pi\)
−0.213141 + 0.977021i \(0.568369\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7336.48 −0.874104
\(414\) 0 0
\(415\) −4240.00 −0.501526
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2466.58 −0.287590 −0.143795 0.989608i \(-0.545931\pi\)
−0.143795 + 0.989608i \(0.545931\pi\)
\(420\) 0 0
\(421\) 13586.5 1.57284 0.786418 0.617694i \(-0.211933\pi\)
0.786418 + 0.617694i \(0.211933\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6378.97 −0.728059
\(426\) 0 0
\(427\) −5339.66 −0.605163
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6754.20 −0.754845 −0.377423 0.926041i \(-0.623190\pi\)
−0.377423 + 0.926041i \(0.623190\pi\)
\(432\) 0 0
\(433\) 7790.00 0.864581 0.432290 0.901734i \(-0.357706\pi\)
0.432290 + 0.901734i \(0.357706\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17809.9 1.94958
\(438\) 0 0
\(439\) −9354.00 −1.01695 −0.508476 0.861076i \(-0.669791\pi\)
−0.508476 + 0.861076i \(0.669791\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6488.99 −0.695940 −0.347970 0.937506i \(-0.613129\pi\)
−0.347970 + 0.937506i \(0.613129\pi\)
\(444\) 0 0
\(445\) 4746.37 0.505617
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10131.3 −1.06487 −0.532434 0.846472i \(-0.678722\pi\)
−0.532434 + 0.846472i \(0.678722\pi\)
\(450\) 0 0
\(451\) 14239.1 1.48668
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3752.33 0.386620
\(456\) 0 0
\(457\) 12010.0 1.22933 0.614665 0.788788i \(-0.289291\pi\)
0.614665 + 0.788788i \(0.289291\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9316.07 0.941199 0.470599 0.882347i \(-0.344038\pi\)
0.470599 + 0.882347i \(0.344038\pi\)
\(462\) 0 0
\(463\) −14770.0 −1.48255 −0.741274 0.671202i \(-0.765778\pi\)
−0.741274 + 0.671202i \(0.765778\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8740.54 −0.866089 −0.433045 0.901372i \(-0.642561\pi\)
−0.433045 + 0.901372i \(0.642561\pi\)
\(468\) 0 0
\(469\) 7119.55 0.700960
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4502.80 0.437714
\(474\) 0 0
\(475\) 10086.0 0.974271
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3001.87 0.286344 0.143172 0.989698i \(-0.454270\pi\)
0.143172 + 0.989698i \(0.454270\pi\)
\(480\) 0 0
\(481\) −3520.00 −0.333676
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 822.192 0.0769770
\(486\) 0 0
\(487\) −9910.00 −0.922105 −0.461052 0.887373i \(-0.652528\pi\)
−0.461052 + 0.887373i \(0.652528\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3389.96 −0.311582 −0.155791 0.987790i \(-0.549793\pi\)
−0.155791 + 0.987790i \(0.549793\pi\)
\(492\) 0 0
\(493\) 18510.8 1.69105
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4271.73 −0.383224 −0.191612 0.981471i \(-0.561372\pi\)
−0.191612 + 0.981471i \(0.561372\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 900.560 0.0798290 0.0399145 0.999203i \(-0.487291\pi\)
0.0399145 + 0.999203i \(0.487291\pi\)
\(504\) 0 0
\(505\) −3560.00 −0.313699
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 853.815 0.0743510 0.0371755 0.999309i \(-0.488164\pi\)
0.0371755 + 0.999309i \(0.488164\pi\)
\(510\) 0 0
\(511\) −300.000 −0.0259711
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3605.00 −0.308457
\(516\) 0 0
\(517\) −17086.9 −1.45354
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7879.90 −0.662619 −0.331310 0.943522i \(-0.607490\pi\)
−0.331310 + 0.943522i \(0.607490\pi\)
\(522\) 0 0
\(523\) 10323.3 0.863114 0.431557 0.902086i \(-0.357964\pi\)
0.431557 + 0.902086i \(0.357964\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4652.89 −0.384598
\(528\) 0 0
\(529\) 10361.0 0.851566
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −22262.4 −1.80918
\(534\) 0 0
\(535\) 8160.00 0.659416
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9221.20 0.736893
\(540\) 0 0
\(541\) −15603.7 −1.24003 −0.620014 0.784591i \(-0.712873\pi\)
−0.620014 + 0.784591i \(0.712873\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10881.8 0.855273
\(546\) 0 0
\(547\) −2254.52 −0.176228 −0.0881138 0.996110i \(-0.528084\pi\)
−0.0881138 + 0.996110i \(0.528084\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29268.2 −2.26292
\(552\) 0 0
\(553\) −940.000 −0.0722837
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 284.605 0.0216501 0.0108250 0.999941i \(-0.496554\pi\)
0.0108250 + 0.999941i \(0.496554\pi\)
\(558\) 0 0
\(559\) −7040.00 −0.532666
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18328.6 1.37204 0.686018 0.727584i \(-0.259357\pi\)
0.686018 + 0.727584i \(0.259357\pi\)
\(564\) 0 0
\(565\) −8543.46 −0.636152
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7879.90 −0.580567 −0.290283 0.956941i \(-0.593750\pi\)
−0.290283 + 0.956941i \(0.593750\pi\)
\(570\) 0 0
\(571\) 8306.14 0.608759 0.304379 0.952551i \(-0.401551\pi\)
0.304379 + 0.952551i \(0.401551\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12757.9 0.925291
\(576\) 0 0
\(577\) −6330.00 −0.456709 −0.228355 0.973578i \(-0.573335\pi\)
−0.228355 + 0.973578i \(0.573335\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6704.03 −0.478709
\(582\) 0 0
\(583\) 5040.00 0.358037
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1922.66 0.135191 0.0675953 0.997713i \(-0.478467\pi\)
0.0675953 + 0.997713i \(0.478467\pi\)
\(588\) 0 0
\(589\) 7356.87 0.514660
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10356.4 0.717180 0.358590 0.933495i \(-0.383258\pi\)
0.358590 + 0.933495i \(0.383258\pi\)
\(594\) 0 0
\(595\) 4746.37 0.327029
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 750.467 0.0511907 0.0255954 0.999672i \(-0.491852\pi\)
0.0255954 + 0.999672i \(0.491852\pi\)
\(600\) 0 0
\(601\) −18578.0 −1.26092 −0.630460 0.776222i \(-0.717134\pi\)
−0.630460 + 0.776222i \(0.717134\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 689.377 0.0463259
\(606\) 0 0
\(607\) 8030.00 0.536948 0.268474 0.963287i \(-0.413481\pi\)
0.268474 + 0.963287i \(0.413481\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26714.9 1.76885
\(612\) 0 0
\(613\) −3856.42 −0.254094 −0.127047 0.991897i \(-0.540550\pi\)
−0.127047 + 0.991897i \(0.540550\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −300.187 −0.0195868 −0.00979340 0.999952i \(-0.503117\pi\)
−0.00979340 + 0.999952i \(0.503117\pi\)
\(618\) 0 0
\(619\) −1423.91 −0.0924584 −0.0462292 0.998931i \(-0.514720\pi\)
−0.0462292 + 0.998931i \(0.514720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7504.67 0.482613
\(624\) 0 0
\(625\) 2225.00 0.142400
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4452.49 −0.282245
\(630\) 0 0
\(631\) −12902.0 −0.813979 −0.406989 0.913433i \(-0.633421\pi\)
−0.406989 + 0.913433i \(0.633421\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16001.1 −0.999977
\(636\) 0 0
\(637\) −14417.1 −0.896744
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19887.4 1.22543 0.612717 0.790302i \(-0.290076\pi\)
0.612717 + 0.790302i \(0.290076\pi\)
\(642\) 0 0
\(643\) −29783.5 −1.82666 −0.913332 0.407216i \(-0.866500\pi\)
−0.913332 + 0.407216i \(0.866500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13958.7 0.848180 0.424090 0.905620i \(-0.360594\pi\)
0.424090 + 0.905620i \(0.360594\pi\)
\(648\) 0 0
\(649\) 27840.0 1.68385
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18461.4 −1.10635 −0.553177 0.833064i \(-0.686585\pi\)
−0.553177 + 0.833064i \(0.686585\pi\)
\(654\) 0 0
\(655\) −1600.00 −0.0954461
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5160.84 −0.305065 −0.152532 0.988298i \(-0.548743\pi\)
−0.152532 + 0.988298i \(0.548743\pi\)
\(660\) 0 0
\(661\) 13467.8 0.792492 0.396246 0.918144i \(-0.370313\pi\)
0.396246 + 0.918144i \(0.370313\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7504.67 −0.437622
\(666\) 0 0
\(667\) −37021.7 −2.14915
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 20262.6 1.16577
\(672\) 0 0
\(673\) −15010.0 −0.859722 −0.429861 0.902895i \(-0.641437\pi\)
−0.429861 + 0.902895i \(0.641437\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6280.28 0.356530 0.178265 0.983983i \(-0.442952\pi\)
0.178265 + 0.983983i \(0.442952\pi\)
\(678\) 0 0
\(679\) 1300.00 0.0734748
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12510.0 0.700850 0.350425 0.936591i \(-0.386037\pi\)
0.350425 + 0.936591i \(0.386037\pi\)
\(684\) 0 0
\(685\) 4271.73 0.238269
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7879.90 −0.435704
\(690\) 0 0
\(691\) 28359.5 1.56128 0.780642 0.624978i \(-0.214892\pi\)
0.780642 + 0.624978i \(0.214892\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1500.93 −0.0819189
\(696\) 0 0
\(697\) −28160.0 −1.53032
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19802.2 1.06693 0.533465 0.845822i \(-0.320890\pi\)
0.533465 + 0.845822i \(0.320890\pi\)
\(702\) 0 0
\(703\) 7040.00 0.377694
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5628.85 −0.299427
\(708\) 0 0
\(709\) 12874.5 0.681964 0.340982 0.940070i \(-0.389240\pi\)
0.340982 + 0.940070i \(0.389240\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9305.78 0.488786
\(714\) 0 0
\(715\) −14239.1 −0.744772
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1500.93 0.0778517 0.0389258 0.999242i \(-0.487606\pi\)
0.0389258 + 0.999242i \(0.487606\pi\)
\(720\) 0 0
\(721\) −5700.00 −0.294423
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20965.9 −1.07401
\(726\) 0 0
\(727\) 23850.0 1.21671 0.608355 0.793665i \(-0.291830\pi\)
0.608355 + 0.793665i \(0.291830\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8904.97 −0.450564
\(732\) 0 0
\(733\) 2195.19 0.110616 0.0553079 0.998469i \(-0.482386\pi\)
0.0553079 + 0.998469i \(0.482386\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27016.8 −1.35031
\(738\) 0 0
\(739\) 2610.50 0.129944 0.0649722 0.997887i \(-0.479304\pi\)
0.0649722 + 0.997887i \(0.479304\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2851.77 0.140809 0.0704047 0.997519i \(-0.477571\pi\)
0.0704047 + 0.997519i \(0.477571\pi\)
\(744\) 0 0
\(745\) 18600.0 0.914700
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12902.1 0.629416
\(750\) 0 0
\(751\) 20578.0 0.999869 0.499935 0.866063i \(-0.333357\pi\)
0.499935 + 0.866063i \(0.333357\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14306.1 −0.689608
\(756\) 0 0
\(757\) 20468.7 0.982758 0.491379 0.870946i \(-0.336493\pi\)
0.491379 + 0.870946i \(0.336493\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22138.8 −1.05457 −0.527286 0.849688i \(-0.676790\pi\)
−0.527286 + 0.849688i \(0.676790\pi\)
\(762\) 0 0
\(763\) 17205.6 0.816362
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −43527.1 −2.04911
\(768\) 0 0
\(769\) −6854.00 −0.321406 −0.160703 0.987003i \(-0.551376\pi\)
−0.160703 + 0.987003i \(0.551376\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38902.3 1.81012 0.905058 0.425288i \(-0.139827\pi\)
0.905058 + 0.425288i \(0.139827\pi\)
\(774\) 0 0
\(775\) 5270.00 0.244263
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 44524.9 2.04784
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10881.8 −0.494760
\(786\) 0 0
\(787\) −13171.2 −0.596571 −0.298286 0.954477i \(-0.596415\pi\)
−0.298286 + 0.954477i \(0.596415\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13508.4 −0.607210
\(792\) 0 0
\(793\) −31680.0 −1.41865
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13730.6 −0.610242 −0.305121 0.952314i \(-0.598697\pi\)
−0.305121 + 0.952314i \(0.598697\pi\)
\(798\) 0 0
\(799\) 33792.0 1.49621
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1138.42 0.0500298
\(804\) 0 0
\(805\) −9492.73 −0.415621
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30393.9 1.32088 0.660440 0.750879i \(-0.270370\pi\)
0.660440 + 0.750879i \(0.270370\pi\)
\(810\) 0 0
\(811\) 27647.6 1.19709 0.598544 0.801090i \(-0.295746\pi\)
0.598544 + 0.801090i \(0.295746\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12757.9 −0.548332
\(816\) 0 0
\(817\) 14080.0 0.602934
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26303.8 1.11816 0.559080 0.829114i \(-0.311154\pi\)
0.559080 + 0.829114i \(0.311154\pi\)
\(822\) 0 0
\(823\) 22970.0 0.972884 0.486442 0.873713i \(-0.338294\pi\)
0.486442 + 0.873713i \(0.338294\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7665.36 −0.322310 −0.161155 0.986929i \(-0.551522\pi\)
−0.161155 + 0.986929i \(0.551522\pi\)
\(828\) 0 0
\(829\) 17383.6 0.728295 0.364147 0.931341i \(-0.381360\pi\)
0.364147 + 0.931341i \(0.381360\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18236.3 −0.758525
\(834\) 0 0
\(835\) 6644.91 0.275397
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33020.5 1.35875 0.679377 0.733789i \(-0.262250\pi\)
0.679377 + 0.733789i \(0.262250\pi\)
\(840\) 0 0
\(841\) 36451.0 1.49457
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8367.39 0.340647
\(846\) 0 0
\(847\) 1090.00 0.0442182
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8904.97 0.358706
\(852\) 0 0
\(853\) −46099.1 −1.85041 −0.925207 0.379463i \(-0.876109\pi\)
−0.925207 + 0.379463i \(0.876109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44352.6 1.76786 0.883929 0.467620i \(-0.154889\pi\)
0.883929 + 0.467620i \(0.154889\pi\)
\(858\) 0 0
\(859\) 7712.85 0.306355 0.153177 0.988199i \(-0.451049\pi\)
0.153177 + 0.988199i \(0.451049\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21163.2 −0.834765 −0.417383 0.908731i \(-0.637052\pi\)
−0.417383 + 0.908731i \(0.637052\pi\)
\(864\) 0 0
\(865\) 9000.00 0.353768
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3567.05 0.139245
\(870\) 0 0
\(871\) 42240.0 1.64322
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13281.6 −0.513142
\(876\) 0 0
\(877\) −17146.3 −0.660191 −0.330096 0.943947i \(-0.607081\pi\)
−0.330096 + 0.943947i \(0.607081\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42026.1 1.60715 0.803573 0.595206i \(-0.202929\pi\)
0.803573 + 0.595206i \(0.202929\pi\)
\(882\) 0 0
\(883\) −4865.03 −0.185415 −0.0927073 0.995693i \(-0.529552\pi\)
−0.0927073 + 0.995693i \(0.529552\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11707.3 0.443170 0.221585 0.975141i \(-0.428877\pi\)
0.221585 + 0.975141i \(0.428877\pi\)
\(888\) 0 0
\(889\) −25300.0 −0.954482
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −53429.8 −2.00220
\(894\) 0 0
\(895\) 800.000 0.0298783
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15292.8 −0.567344
\(900\) 0 0
\(901\) −9967.37 −0.368547
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 375.233 0.0137825
\(906\) 0 0
\(907\) 12933.9 0.473497 0.236748 0.971571i \(-0.423918\pi\)
0.236748 + 0.971571i \(0.423918\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20262.6 0.736915 0.368458 0.929645i \(-0.379886\pi\)
0.368458 + 0.929645i \(0.379886\pi\)
\(912\) 0 0
\(913\) 25440.0 0.922170
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2529.82 −0.0911037
\(918\) 0 0
\(919\) 22746.0 0.816454 0.408227 0.912880i \(-0.366147\pi\)
0.408227 + 0.912880i \(0.366147\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 5043.01 0.179258
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13883.6 −0.490320 −0.245160 0.969483i \(-0.578840\pi\)
−0.245160 + 0.969483i \(0.578840\pi\)
\(930\) 0 0
\(931\) 28834.2 1.01504
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18011.2 −0.629978
\(936\) 0 0
\(937\) 27850.0 0.970992 0.485496 0.874239i \(-0.338639\pi\)
0.485496 + 0.874239i \(0.338639\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 36789.9 1.27451 0.637257 0.770651i \(-0.280069\pi\)
0.637257 + 0.770651i \(0.280069\pi\)
\(942\) 0 0
\(943\) 56320.0 1.94489
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42728.7 −1.46620 −0.733102 0.680118i \(-0.761928\pi\)
−0.733102 + 0.680118i \(0.761928\pi\)
\(948\) 0 0
\(949\) −1779.89 −0.0608826
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24990.5 −0.849447 −0.424723 0.905323i \(-0.639629\pi\)
−0.424723 + 0.905323i \(0.639629\pi\)
\(954\) 0 0
\(955\) 23731.8 0.804130
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6754.20 0.227429
\(960\) 0 0
\(961\) −25947.0 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8538.15 −0.284822
\(966\) 0 0
\(967\) 10550.0 0.350843 0.175421 0.984493i \(-0.443871\pi\)
0.175421 + 0.984493i \(0.443871\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −53012.4 −1.75206 −0.876030 0.482257i \(-0.839817\pi\)
−0.876030 + 0.482257i \(0.839817\pi\)
\(972\) 0 0
\(973\) −2373.18 −0.0781920
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34596.5 −1.13290 −0.566448 0.824097i \(-0.691683\pi\)
−0.566448 + 0.824097i \(0.691683\pi\)
\(978\) 0 0
\(979\) −28478.2 −0.929691
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33921.1 1.10063 0.550313 0.834959i \(-0.314509\pi\)
0.550313 + 0.834959i \(0.314509\pi\)
\(984\) 0 0
\(985\) −9160.00 −0.296306
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17809.9 0.572622
\(990\) 0 0
\(991\) 8818.00 0.282657 0.141328 0.989963i \(-0.454863\pi\)
0.141328 + 0.989963i \(0.454863\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20200.6 −0.643621
\(996\) 0 0
\(997\) 25096.4 0.797203 0.398602 0.917124i \(-0.369496\pi\)
0.398602 + 0.917124i \(0.369496\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.4.a.cc.1.4 4
3.2 odd 2 inner 2304.4.a.cc.1.2 4
4.3 odd 2 2304.4.a.bx.1.4 4
8.3 odd 2 2304.4.a.bx.1.1 4
8.5 even 2 inner 2304.4.a.cc.1.1 4
12.11 even 2 2304.4.a.bx.1.2 4
16.3 odd 4 72.4.d.c.37.3 yes 4
16.5 even 4 288.4.d.c.145.3 4
16.11 odd 4 72.4.d.c.37.4 yes 4
16.13 even 4 288.4.d.c.145.2 4
24.5 odd 2 inner 2304.4.a.cc.1.3 4
24.11 even 2 2304.4.a.bx.1.3 4
48.5 odd 4 288.4.d.c.145.1 4
48.11 even 4 72.4.d.c.37.1 4
48.29 odd 4 288.4.d.c.145.4 4
48.35 even 4 72.4.d.c.37.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.d.c.37.1 4 48.11 even 4
72.4.d.c.37.2 yes 4 48.35 even 4
72.4.d.c.37.3 yes 4 16.3 odd 4
72.4.d.c.37.4 yes 4 16.11 odd 4
288.4.d.c.145.1 4 48.5 odd 4
288.4.d.c.145.2 4 16.13 even 4
288.4.d.c.145.3 4 16.5 even 4
288.4.d.c.145.4 4 48.29 odd 4
2304.4.a.bx.1.1 4 8.3 odd 2
2304.4.a.bx.1.2 4 12.11 even 2
2304.4.a.bx.1.3 4 24.11 even 2
2304.4.a.bx.1.4 4 4.3 odd 2
2304.4.a.cc.1.1 4 8.5 even 2 inner
2304.4.a.cc.1.2 4 3.2 odd 2 inner
2304.4.a.cc.1.3 4 24.5 odd 2 inner
2304.4.a.cc.1.4 4 1.1 even 1 trivial