L(s) = 1 | + (0.951 − 0.309i)2-s + (0.453 + 0.891i)3-s + i·5-s + (0.707 + 0.707i)6-s + (0.809 − 0.587i)7-s + (−0.587 + 0.809i)8-s + (−0.587 + 0.809i)9-s + (0.309 + 0.951i)10-s + (0.587 − 0.809i)14-s + (−0.891 + 0.453i)15-s + (−0.309 + 0.951i)16-s + (0.831 − 1.14i)17-s + (−0.309 + 0.951i)18-s + (0.309 + 0.951i)19-s + (0.891 + 0.453i)21-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.453 + 0.891i)3-s + i·5-s + (0.707 + 0.707i)6-s + (0.809 − 0.587i)7-s + (−0.587 + 0.809i)8-s + (−0.587 + 0.809i)9-s + (0.309 + 0.951i)10-s + (0.587 − 0.809i)14-s + (−0.891 + 0.453i)15-s + (−0.309 + 0.951i)16-s + (0.831 − 1.14i)17-s + (−0.309 + 0.951i)18-s + (0.309 + 0.951i)19-s + (0.891 + 0.453i)21-s + ⋯ |
Λ(s)=(=(2883s/2ΓC(s)L(s)(0.0752−0.997i)Λ(1−s)
Λ(s)=(=(2883s/2ΓC(s)L(s)(0.0752−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
2883
= 3⋅312
|
Sign: |
0.0752−0.997i
|
Analytic conductor: |
1.43880 |
Root analytic conductor: |
1.19950 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2883(2453,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2883, ( :0), 0.0752−0.997i)
|
Particular Values
L(21) |
≈ |
2.198196972 |
L(21) |
≈ |
2.198196972 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.453−0.891i)T |
| 31 | 1 |
good | 2 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 5 | 1−iT−T2 |
| 7 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 11 | 1+(−0.309+0.951i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(−0.831+1.14i)T+(−0.309−0.951i)T2 |
| 19 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 23 | 1+(−0.309−0.951i)T2 |
| 29 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 37 | 1+T2 |
| 41 | 1+(0.951−0.309i)T+(0.809−0.587i)T2 |
| 43 | 1+(0.437+1.34i)T+(−0.809+0.587i)T2 |
| 47 | 1+(0.809+0.587i)T2 |
| 53 | 1+(−0.309−0.951i)T2 |
| 59 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 61 | 1−1.41T+T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 89 | 1+(−0.309+0.951i)T2 |
| 97 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.205182876801631863322374053779, −8.333772572032062358581153141962, −7.67866285491807076170336612257, −6.92437892693810631146637404501, −5.57157742432291243374935901767, −5.20272005901193215366972590022, −4.26040985071515780223231614058, −3.54584083045496564730379019852, −3.03625784569626993908862257455, −1.98250557323724143719386622107,
1.03500000886511421970374054109, 2.04177907635318126066102834741, 3.26812180278011093091308842808, 4.12710642793995584595047045811, 5.12267812142190632907088364196, 5.51013577304456418238162499889, 6.33819194192278041554242564735, 7.19572798248096167243057571377, 8.112629270844891560316066526071, 8.595108785079460221605944326031