gp: [N,k,chi] = [2883,1,Mod(374,2883)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2883, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 8]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2883.374");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2883 Z ) × \left(\mathbb{Z}/2883\mathbb{Z}\right)^\times ( Z / 2 8 8 3 Z ) × .
n n n
962 962 9 6 2
964 964 9 6 4
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 40 12 -\zeta_{40}^{12} − ζ 4 0 1 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 2883 , [ χ ] ) S_{1}^{\mathrm{new}}(2883, [\chi]) S 1 n e w ( 2 8 8 3 , [ χ ] ) :
T 2 8 − T 2 6 + T 2 4 − T 2 2 + 1 T_{2}^{8} - T_{2}^{6} + T_{2}^{4} - T_{2}^{2} + 1 T 2 8 − T 2 6 + T 2 4 − T 2 2 + 1
T2^8 - T2^6 + T2^4 - T2^2 + 1
T 7 4 − T 7 3 + T 7 2 − T 7 + 1 T_{7}^{4} - T_{7}^{3} + T_{7}^{2} - T_{7} + 1 T 7 4 − T 7 3 + T 7 2 − T 7 + 1
T7^4 - T7^3 + T7^2 - T7 + 1
T 13 T_{13} T 1 3
T13
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
3 3 3
T 16 − T 12 + ⋯ + 1 T^{16} - T^{12} + \cdots + 1 T 1 6 − T 1 2 + ⋯ + 1
T^16 - T^12 + T^8 - T^4 + 1
5 5 5
( T 2 + 1 ) 8 (T^{2} + 1)^{8} ( T 2 + 1 ) 8
(T^2 + 1)^8
7 7 7
( T 4 − T 3 + T 2 + ⋯ + 1 ) 4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 4
(T^4 - T^3 + T^2 - T + 1)^4
11 11 1 1
T 16 T^{16} T 1 6
T^16
13 13 1 3
T 16 T^{16} T 1 6
T^16
17 17 1 7
( T 8 − 2 T 6 + 4 T 4 + ⋯ + 16 ) 2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} ( T 8 − 2 T 6 + 4 T 4 + ⋯ + 1 6 ) 2
(T^8 - 2*T^6 + 4*T^4 - 8*T^2 + 16)^2
19 19 1 9
( T 4 + T 3 + T 2 + ⋯ + 1 ) 4 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} ( T 4 + T 3 + T 2 + ⋯ + 1 ) 4
(T^4 + T^3 + T^2 + T + 1)^4
23 23 2 3
T 16 T^{16} T 1 6
T^16
29 29 2 9
( T 8 − 2 T 6 + 4 T 4 + ⋯ + 16 ) 2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} ( T 8 − 2 T 6 + 4 T 4 + ⋯ + 1 6 ) 2
(T^8 - 2*T^6 + 4*T^4 - 8*T^2 + 16)^2
31 31 3 1
T 16 T^{16} T 1 6
T^16
37 37 3 7
T 16 T^{16} T 1 6
T^16
41 41 4 1
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
43 43 4 3
( T 8 + 2 T 6 + 4 T 4 + ⋯ + 16 ) 2 (T^{8} + 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} ( T 8 + 2 T 6 + 4 T 4 + ⋯ + 1 6 ) 2
(T^8 + 2*T^6 + 4*T^4 + 8*T^2 + 16)^2
47 47 4 7
T 16 T^{16} T 1 6
T^16
53 53 5 3
T 16 T^{16} T 1 6
T^16
59 59 5 9
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
61 61 6 1
( T 2 − 2 ) 8 (T^{2} - 2)^{8} ( T 2 − 2 ) 8
(T^2 - 2)^8
67 67 6 7
T 16 T^{16} T 1 6
T^16
71 71 7 1
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
73 73 7 3
T 16 T^{16} T 1 6
T^16
79 79 7 9
T 16 T^{16} T 1 6
T^16
83 83 8 3
( T 8 − 2 T 6 + 4 T 4 + ⋯ + 16 ) 2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} ( T 8 − 2 T 6 + 4 T 4 + ⋯ + 1 6 ) 2
(T^8 - 2*T^6 + 4*T^4 - 8*T^2 + 16)^2
89 89 8 9
T 16 T^{16} T 1 6
T^16
97 97 9 7
( T 4 − T 3 + T 2 + ⋯ + 1 ) 4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 4
(T^4 - T^3 + T^2 - T + 1)^4
show more
show less