Properties

Label 2883.1.l.d
Level 28832883
Weight 11
Character orbit 2883.l
Analytic conductor 1.4391.439
Analytic rank 00
Dimension 1616
Projective image S4S_{4}
CM/RM no
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,1,Mod(374,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.374"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2883=3312 2883 = 3 \cdot 31^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2883.l (of order 1010, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.438804431421.43880443142
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.268119.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ4014q2ζ4011q3+ζ4010q5+ζ405q6ζ408q7ζ402q8ζ402q9ζ404q10+ζ402q14+ζ408q97+O(q100) q + \zeta_{40}^{14} q^{2} - \zeta_{40}^{11} q^{3} + \zeta_{40}^{10} q^{5} + \zeta_{40}^{5} q^{6} - \zeta_{40}^{8} q^{7} - \zeta_{40}^{2} q^{8} - \zeta_{40}^{2} q^{9} - \zeta_{40}^{4} q^{10} + \zeta_{40}^{2} q^{14} + \cdots - \zeta_{40}^{8} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q74q10+4q16+4q184q194q404q45+4q51+4q64+4q70+4q72+4q814q8216q87+4q97+O(q100) 16 q + 4 q^{7} - 4 q^{10} + 4 q^{16} + 4 q^{18} - 4 q^{19} - 4 q^{40} - 4 q^{45} + 4 q^{51} + 4 q^{64} + 4 q^{70} + 4 q^{72} + 4 q^{81} - 4 q^{82} - 16 q^{87} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2883Z)×\left(\mathbb{Z}/2883\mathbb{Z}\right)^\times.

nn 962962 964964
χ(n)\chi(n) 1-1 ζ4012-\zeta_{40}^{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
374.1
−0.987688 0.156434i
0.987688 + 0.156434i
−0.156434 + 0.987688i
0.156434 0.987688i
−0.987688 + 0.156434i
0.987688 0.156434i
−0.156434 0.987688i
0.156434 + 0.987688i
0.453990 0.891007i
−0.453990 + 0.891007i
0.891007 + 0.453990i
−0.891007 0.453990i
0.453990 + 0.891007i
−0.453990 0.891007i
0.891007 0.453990i
−0.891007 + 0.453990i
−0.587785 + 0.809017i −0.156434 + 0.987688i 0 1.00000i −0.707107 0.707107i −0.309017 0.951057i −0.951057 0.309017i −0.951057 0.309017i −0.809017 0.587785i
374.2 −0.587785 + 0.809017i 0.156434 0.987688i 0 1.00000i 0.707107 + 0.707107i −0.309017 0.951057i −0.951057 0.309017i −0.951057 0.309017i −0.809017 0.587785i
374.3 0.587785 0.809017i −0.987688 0.156434i 0 1.00000i −0.707107 + 0.707107i −0.309017 0.951057i 0.951057 + 0.309017i 0.951057 + 0.309017i −0.809017 0.587785i
374.4 0.587785 0.809017i 0.987688 + 0.156434i 0 1.00000i 0.707107 0.707107i −0.309017 0.951057i 0.951057 + 0.309017i 0.951057 + 0.309017i −0.809017 0.587785i
1349.1 −0.587785 0.809017i −0.156434 0.987688i 0 1.00000i −0.707107 + 0.707107i −0.309017 + 0.951057i −0.951057 + 0.309017i −0.951057 + 0.309017i −0.809017 + 0.587785i
1349.2 −0.587785 0.809017i 0.156434 + 0.987688i 0 1.00000i 0.707107 0.707107i −0.309017 + 0.951057i −0.951057 + 0.309017i −0.951057 + 0.309017i −0.809017 + 0.587785i
1349.3 0.587785 + 0.809017i −0.987688 + 0.156434i 0 1.00000i −0.707107 0.707107i −0.309017 + 0.951057i 0.951057 0.309017i 0.951057 0.309017i −0.809017 + 0.587785i
1349.4 0.587785 + 0.809017i 0.987688 0.156434i 0 1.00000i 0.707107 + 0.707107i −0.309017 + 0.951057i 0.951057 0.309017i 0.951057 0.309017i −0.809017 + 0.587785i
1589.1 −0.951057 0.309017i −0.891007 0.453990i 0 1.00000i 0.707107 + 0.707107i 0.809017 + 0.587785i 0.587785 + 0.809017i 0.587785 + 0.809017i 0.309017 0.951057i
1589.2 −0.951057 0.309017i 0.891007 + 0.453990i 0 1.00000i −0.707107 0.707107i 0.809017 + 0.587785i 0.587785 + 0.809017i 0.587785 + 0.809017i 0.309017 0.951057i
1589.3 0.951057 + 0.309017i −0.453990 + 0.891007i 0 1.00000i −0.707107 + 0.707107i 0.809017 + 0.587785i −0.587785 0.809017i −0.587785 0.809017i 0.309017 0.951057i
1589.4 0.951057 + 0.309017i 0.453990 0.891007i 0 1.00000i 0.707107 0.707107i 0.809017 + 0.587785i −0.587785 0.809017i −0.587785 0.809017i 0.309017 0.951057i
2453.1 −0.951057 + 0.309017i −0.891007 + 0.453990i 0 1.00000i 0.707107 0.707107i 0.809017 0.587785i 0.587785 0.809017i 0.587785 0.809017i 0.309017 + 0.951057i
2453.2 −0.951057 + 0.309017i 0.891007 0.453990i 0 1.00000i −0.707107 + 0.707107i 0.809017 0.587785i 0.587785 0.809017i 0.587785 0.809017i 0.309017 + 0.951057i
2453.3 0.951057 0.309017i −0.453990 0.891007i 0 1.00000i −0.707107 0.707107i 0.809017 0.587785i −0.587785 + 0.809017i −0.587785 + 0.809017i 0.309017 + 0.951057i
2453.4 0.951057 0.309017i 0.453990 + 0.891007i 0 1.00000i 0.707107 + 0.707107i 0.809017 0.587785i −0.587785 + 0.809017i −0.587785 + 0.809017i 0.309017 + 0.951057i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
31.b odd 2 1 inner
31.d even 5 3 inner
31.f odd 10 3 inner
93.c even 2 1 inner
93.k even 10 3 inner
93.l odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2883.1.l.d 16
3.b odd 2 1 inner 2883.1.l.d 16
31.b odd 2 1 inner 2883.1.l.d 16
31.c even 3 2 2883.1.o.e 32
31.d even 5 1 2883.1.b.c 4
31.d even 5 3 inner 2883.1.l.d 16
31.e odd 6 2 2883.1.o.e 32
31.f odd 10 1 2883.1.b.c 4
31.f odd 10 3 inner 2883.1.l.d 16
31.g even 15 2 2883.1.h.c 8
31.g even 15 6 2883.1.o.e 32
31.h odd 30 2 2883.1.h.c 8
31.h odd 30 6 2883.1.o.e 32
93.c even 2 1 inner 2883.1.l.d 16
93.g even 6 2 2883.1.o.e 32
93.h odd 6 2 2883.1.o.e 32
93.k even 10 1 2883.1.b.c 4
93.k even 10 3 inner 2883.1.l.d 16
93.l odd 10 1 2883.1.b.c 4
93.l odd 10 3 inner 2883.1.l.d 16
93.o odd 30 2 2883.1.h.c 8
93.o odd 30 6 2883.1.o.e 32
93.p even 30 2 2883.1.h.c 8
93.p even 30 6 2883.1.o.e 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2883.1.b.c 4 31.d even 5 1
2883.1.b.c 4 31.f odd 10 1
2883.1.b.c 4 93.k even 10 1
2883.1.b.c 4 93.l odd 10 1
2883.1.h.c 8 31.g even 15 2
2883.1.h.c 8 31.h odd 30 2
2883.1.h.c 8 93.o odd 30 2
2883.1.h.c 8 93.p even 30 2
2883.1.l.d 16 1.a even 1 1 trivial
2883.1.l.d 16 3.b odd 2 1 inner
2883.1.l.d 16 31.b odd 2 1 inner
2883.1.l.d 16 31.d even 5 3 inner
2883.1.l.d 16 31.f odd 10 3 inner
2883.1.l.d 16 93.c even 2 1 inner
2883.1.l.d 16 93.k even 10 3 inner
2883.1.l.d 16 93.l odd 10 3 inner
2883.1.o.e 32 31.c even 3 2
2883.1.o.e 32 31.e odd 6 2
2883.1.o.e 32 31.g even 15 6
2883.1.o.e 32 31.h odd 30 6
2883.1.o.e 32 93.g even 6 2
2883.1.o.e 32 93.h odd 6 2
2883.1.o.e 32 93.o odd 30 6
2883.1.o.e 32 93.p even 30 6

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2883,[χ])S_{1}^{\mathrm{new}}(2883, [\chi]):

T28T26+T24T22+1 T_{2}^{8} - T_{2}^{6} + T_{2}^{4} - T_{2}^{2} + 1 Copy content Toggle raw display
T74T73+T72T7+1 T_{7}^{4} - T_{7}^{3} + T_{7}^{2} - T_{7} + 1 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
55 (T2+1)8 (T^{2} + 1)^{8} Copy content Toggle raw display
77 (T4T3+T2++1)4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 (T82T6+4T4++16)2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
1919 (T4+T3+T2++1)4 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 (T82T6+4T4++16)2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
4343 (T8+2T6+4T4++16)2 (T^{8} + 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T16 T^{16} Copy content Toggle raw display
5959 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6161 (T22)8 (T^{2} - 2)^{8} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
7373 T16 T^{16} Copy content Toggle raw display
7979 T16 T^{16} Copy content Toggle raw display
8383 (T82T6+4T4++16)2 (T^{8} - 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 (T4T3+T2++1)4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
show more
show less