L(s) = 1 | + 3·2-s + 3·3-s + 6·4-s − 3·5-s + 9·6-s + 3·7-s + 10·8-s + 3·9-s − 9·10-s + 18·12-s + 3·13-s + 9·14-s − 9·15-s + 15·16-s + 3·17-s + 9·18-s − 18·20-s + 9·21-s − 15·23-s + 30·24-s + 6·25-s + 9·26-s + 27-s + 18·28-s − 3·29-s − 27·30-s − 9·31-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 1.73·3-s + 3·4-s − 1.34·5-s + 3.67·6-s + 1.13·7-s + 3.53·8-s + 9-s − 2.84·10-s + 5.19·12-s + 0.832·13-s + 2.40·14-s − 2.32·15-s + 15/4·16-s + 0.727·17-s + 2.12·18-s − 4.02·20-s + 1.96·21-s − 3.12·23-s + 6.12·24-s + 6/5·25-s + 1.76·26-s + 0.192·27-s + 3.40·28-s − 0.557·29-s − 4.92·30-s − 1.61·31-s + ⋯ |
Λ(s)=(=(24389000s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=(24389000s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
24389000
= 23⋅53⋅293
|
Sign: |
1
|
Analytic conductor: |
12.4172 |
Root analytic conductor: |
1.52172 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 24389000, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
10.14516544 |
L(21) |
≈ |
10.14516544 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)3 |
| 5 | C1 | (1+T)3 |
| 29 | C1 | (1+T)3 |
good | 3 | S4×C2 | 1−pT+2pT2−10T3+2p2T4−p3T5+p3T6 |
| 7 | S4×C2 | 1−3T+6T2+4T3+6pT4−3p2T5+p3T6 |
| 11 | S4×C2 | 1+9T2−24T3+9pT4+p3T6 |
| 13 | S4×C2 | 1−3T+6T2+40T3+6pT4−3p2T5+p3T6 |
| 17 | S4×C2 | 1−3T+42T2−84T3+42pT4−3p2T5+p3T6 |
| 19 | S4×C2 | 1+9T2−56T3+9pT4+p3T6 |
| 23 | S4×C2 | 1+15T+108T2+24pT3+108pT4+15p2T5+p3T6 |
| 31 | S4×C2 | 1+9T+108T2+556T3+108pT4+9p2T5+p3T6 |
| 37 | S4×C2 | 1+39T2+232T3+39pT4+p3T6 |
| 41 | S4×C2 | 1+12T+99T2+528T3+99pT4+12p2T5+p3T6 |
| 43 | S4×C2 | 1−9T+144T2−758T3+144pT4−9p2T5+p3T6 |
| 47 | S4×C2 | 1+45T2+192T3+45pT4+p3T6 |
| 53 | S4×C2 | 1−9T+78T2−468T3+78pT4−9p2T5+p3T6 |
| 59 | S4×C2 | 1+15T+180T2+1602T3+180pT4+15p2T5+p3T6 |
| 61 | S4×C2 | 1−15T+204T2−1604T3+204pT4−15p2T5+p3T6 |
| 67 | S4×C2 | 1−18T+3pT2−1676T3+3p2T4−18p2T5+p3T6 |
| 71 | C2 | (1+12T+pT2)3 |
| 73 | S4×C2 | 1+9T+234T2+1312T3+234pT4+9p2T5+p3T6 |
| 79 | S4×C2 | 1−9T+102T2−320T3+102pT4−9p2T5+p3T6 |
| 83 | S4×C2 | 1−12T+3pT2−1920T3+3p2T4−12p2T5+p3T6 |
| 89 | S4×C2 | 1+243T2−24T3+243pT4+p3T6 |
| 97 | S4×C2 | 1−9T+282T2−1748T3+282pT4−9p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63558349084430931817762020080, −10.39576802160501566254891546059, −9.903128644917207584138040105758, −9.900102189037536620764853225375, −8.807995506409440880056456620375, −8.780491499792404110645782353211, −8.740768763493239935399568839108, −7.965254244668962494130985274267, −7.897885815155730349389946441766, −7.75234000453503620370712933227, −7.27335930412895876702869607926, −7.08820154662815520981181126867, −6.43990451466365518223286679974, −5.88306303986387319098906987374, −5.83393683358686715852853527128, −5.38584246802692058432397017240, −4.67807927963898269299364813226, −4.58550918474849529536313996909, −3.99536896728196627920557218645, −3.75702713742074221972192946275, −3.40347079805317736636773815143, −3.26772954396411075380503340706, −2.35928655279984995783914105728, −2.11697422565417834337721711706, −1.52241067737148877215906531093,
1.52241067737148877215906531093, 2.11697422565417834337721711706, 2.35928655279984995783914105728, 3.26772954396411075380503340706, 3.40347079805317736636773815143, 3.75702713742074221972192946275, 3.99536896728196627920557218645, 4.58550918474849529536313996909, 4.67807927963898269299364813226, 5.38584246802692058432397017240, 5.83393683358686715852853527128, 5.88306303986387319098906987374, 6.43990451466365518223286679974, 7.08820154662815520981181126867, 7.27335930412895876702869607926, 7.75234000453503620370712933227, 7.897885815155730349389946441766, 7.965254244668962494130985274267, 8.740768763493239935399568839108, 8.780491499792404110645782353211, 8.807995506409440880056456620375, 9.900102189037536620764853225375, 9.903128644917207584138040105758, 10.39576802160501566254891546059, 10.63558349084430931817762020080