Properties

Label 290.2.a.e
Level $290$
Weight $2$
Character orbit 290.a
Self dual yes
Analytic conductor $2.316$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [290,2,Mod(1,290)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(290, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("290.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.31566165862\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} - q^{5} + ( - \beta_1 + 1) q^{6} + ( - \beta_{2} + \beta_1 + 1) q^{7} + q^{8} + (\beta_{2} - \beta_1 + 2) q^{9} - q^{10} + 2 \beta_1 q^{11} + ( - \beta_1 + 1) q^{12}+ \cdots + ( - 4 \beta_{2} + 4 \beta_1 - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - 3 q^{5} + 3 q^{6} + 3 q^{7} + 3 q^{8} + 6 q^{9} - 3 q^{10} + 3 q^{12} + 3 q^{13} + 3 q^{14} - 3 q^{15} + 3 q^{16} + 3 q^{17} + 6 q^{18} - 3 q^{20} - 12 q^{21} - 15 q^{23}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66908
−0.523976
−2.14510
1.00000 −1.66908 1.00000 −1.00000 −1.66908 3.21417 1.00000 −0.214175 −1.00000
1.2 1.00000 1.52398 1.00000 −1.00000 1.52398 3.67750 1.00000 −0.677496 −1.00000
1.3 1.00000 3.14510 1.00000 −1.00000 3.14510 −3.89167 1.00000 6.89167 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 290.2.a.e 3
3.b odd 2 1 2610.2.a.x 3
4.b odd 2 1 2320.2.a.l 3
5.b even 2 1 1450.2.a.p 3
5.c odd 4 2 1450.2.b.l 6
8.b even 2 1 9280.2.a.bf 3
8.d odd 2 1 9280.2.a.by 3
29.b even 2 1 8410.2.a.v 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.a.e 3 1.a even 1 1 trivial
1450.2.a.p 3 5.b even 2 1
1450.2.b.l 6 5.c odd 4 2
2320.2.a.l 3 4.b odd 2 1
2610.2.a.x 3 3.b odd 2 1
8410.2.a.v 3 29.b even 2 1
9280.2.a.bf 3 8.b even 2 1
9280.2.a.by 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(290))\):

\( T_{3}^{3} - 3T_{3}^{2} - 3T_{3} + 8 \) Copy content Toggle raw display
\( T_{7}^{3} - 3T_{7}^{2} - 15T_{7} + 46 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 3 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 3 T^{2} + \cdots + 46 \) Copy content Toggle raw display
$11$ \( T^{3} - 24T - 24 \) Copy content Toggle raw display
$13$ \( T^{3} - 3 T^{2} + \cdots + 118 \) Copy content Toggle raw display
$17$ \( T^{3} - 3 T^{2} + \cdots + 18 \) Copy content Toggle raw display
$19$ \( T^{3} - 48T - 56 \) Copy content Toggle raw display
$23$ \( T^{3} + 15 T^{2} + \cdots - 138 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 9 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$37$ \( T^{3} - 72T + 232 \) Copy content Toggle raw display
$41$ \( T^{3} + 12 T^{2} + \cdots - 456 \) Copy content Toggle raw display
$43$ \( T^{3} - 9 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{3} - 96T + 192 \) Copy content Toggle raw display
$53$ \( T^{3} - 9 T^{2} + \cdots + 486 \) Copy content Toggle raw display
$59$ \( T^{3} + 15 T^{2} + \cdots - 168 \) Copy content Toggle raw display
$61$ \( T^{3} - 15 T^{2} + \cdots + 226 \) Copy content Toggle raw display
$67$ \( T^{3} - 18T^{2} + 736 \) Copy content Toggle raw display
$71$ \( (T + 12)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} + 9 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$79$ \( T^{3} - 9 T^{2} + \cdots + 1102 \) Copy content Toggle raw display
$83$ \( T^{3} - 12T^{2} + 72 \) Copy content Toggle raw display
$89$ \( T^{3} - 24T - 24 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots - 2 \) Copy content Toggle raw display
show more
show less