Properties

Label 2-2912-104.77-c1-0-77
Degree $2$
Conductor $2912$
Sign $-0.224 + 0.974i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.58i·3-s + 1.51·5-s i·7-s − 3.69·9-s − 1.15·11-s + (−3.39 − 1.20i)13-s + 3.92i·15-s + 0.0878·17-s − 8.25·19-s + 2.58·21-s + 6.48·23-s − 2.69·25-s − 1.80i·27-s + 2.75i·29-s − 5.46i·31-s + ⋯
L(s)  = 1  + 1.49i·3-s + 0.678·5-s − 0.377i·7-s − 1.23·9-s − 0.346·11-s + (−0.942 − 0.334i)13-s + 1.01i·15-s + 0.0213·17-s − 1.89·19-s + 0.564·21-s + 1.35·23-s − 0.539·25-s − 0.348i·27-s + 0.510i·29-s − 0.981i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.224 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-0.224 + 0.974i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -0.224 + 0.974i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1243681301\)
\(L(\frac12)\) \(\approx\) \(0.1243681301\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + iT \)
13 \( 1 + (3.39 + 1.20i)T \)
good3 \( 1 - 2.58iT - 3T^{2} \)
5 \( 1 - 1.51T + 5T^{2} \)
11 \( 1 + 1.15T + 11T^{2} \)
17 \( 1 - 0.0878T + 17T^{2} \)
19 \( 1 + 8.25T + 19T^{2} \)
23 \( 1 - 6.48T + 23T^{2} \)
29 \( 1 - 2.75iT - 29T^{2} \)
31 \( 1 + 5.46iT - 31T^{2} \)
37 \( 1 + 8.75T + 37T^{2} \)
41 \( 1 + 0.221iT - 41T^{2} \)
43 \( 1 + 11.3iT - 43T^{2} \)
47 \( 1 - 4.58iT - 47T^{2} \)
53 \( 1 - 10.8iT - 53T^{2} \)
59 \( 1 + 3.96T + 59T^{2} \)
61 \( 1 + 11.0iT - 61T^{2} \)
67 \( 1 + 4.63T + 67T^{2} \)
71 \( 1 + 9.36iT - 71T^{2} \)
73 \( 1 + 10.4iT - 73T^{2} \)
79 \( 1 + 7.68T + 79T^{2} \)
83 \( 1 + 5.19T + 83T^{2} \)
89 \( 1 + 1.08iT - 89T^{2} \)
97 \( 1 - 10.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.928908386748651209524177432446, −7.890497265360193632207217538338, −7.00547472650923033079133633066, −6.06972571311206388105884405494, −5.23595647855725174034666780225, −4.68466147867435414593255683521, −3.89597769082662193801631041093, −2.96097231701429019487223223022, −1.97261604452941040736812010703, −0.03532260874132731842229973762, 1.49191681070475131381881625217, 2.20454051798277847761109739131, 2.90907644502832466796798887014, 4.42038304615578903847785407734, 5.34649837611314479896467331842, 6.09051604692194511906095798591, 6.84762416691023949549247406933, 7.21690920979625891848187487385, 8.315280065082210702244813408819, 8.665772242529196601698040398729

Graph of the $Z$-function along the critical line