Properties

Label 2912.2.i.a.337.20
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(337,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.20
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58827i q^{3} +1.51724 q^{5} -1.00000i q^{7} -3.69913 q^{9} -1.15039 q^{11} +(-3.39762 - 1.20671i) q^{13} +3.92702i q^{15} +0.0878473 q^{17} -8.25567 q^{19} +2.58827 q^{21} +6.48403 q^{23} -2.69799 q^{25} -1.80953i q^{27} +2.75060i q^{29} -5.46650i q^{31} -2.97752i q^{33} -1.51724i q^{35} -8.75613 q^{37} +(3.12330 - 8.79396i) q^{39} -0.221622i q^{41} -11.3062i q^{43} -5.61245 q^{45} +4.58078i q^{47} -1.00000 q^{49} +0.227372i q^{51} +10.8067i q^{53} -1.74542 q^{55} -21.3679i q^{57} -3.96379 q^{59} -11.0547i q^{61} +3.69913i q^{63} +(-5.15500 - 1.83087i) q^{65} -4.63551 q^{67} +16.7824i q^{69} -9.36899i q^{71} -10.4110i q^{73} -6.98312i q^{75} +1.15039i q^{77} -7.68869 q^{79} -6.41384 q^{81} -5.19464 q^{83} +0.133285 q^{85} -7.11928 q^{87} -1.08552i q^{89} +(-1.20671 + 3.39762i) q^{91} +14.1488 q^{93} -12.5258 q^{95} +10.4826i q^{97} +4.25545 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.58827i 1.49434i 0.664635 + 0.747168i \(0.268587\pi\)
−0.664635 + 0.747168i \(0.731413\pi\)
\(4\) 0 0
\(5\) 1.51724 0.678529 0.339265 0.940691i \(-0.389822\pi\)
0.339265 + 0.940691i \(0.389822\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −3.69913 −1.23304
\(10\) 0 0
\(11\) −1.15039 −0.346857 −0.173428 0.984847i \(-0.555484\pi\)
−0.173428 + 0.984847i \(0.555484\pi\)
\(12\) 0 0
\(13\) −3.39762 1.20671i −0.942331 0.334682i
\(14\) 0 0
\(15\) 3.92702i 1.01395i
\(16\) 0 0
\(17\) 0.0878473 0.0213061 0.0106531 0.999943i \(-0.496609\pi\)
0.0106531 + 0.999943i \(0.496609\pi\)
\(18\) 0 0
\(19\) −8.25567 −1.89398 −0.946990 0.321262i \(-0.895893\pi\)
−0.946990 + 0.321262i \(0.895893\pi\)
\(20\) 0 0
\(21\) 2.58827 0.564806
\(22\) 0 0
\(23\) 6.48403 1.35201 0.676007 0.736895i \(-0.263709\pi\)
0.676007 + 0.736895i \(0.263709\pi\)
\(24\) 0 0
\(25\) −2.69799 −0.539598
\(26\) 0 0
\(27\) 1.80953i 0.348243i
\(28\) 0 0
\(29\) 2.75060i 0.510773i 0.966839 + 0.255387i \(0.0822027\pi\)
−0.966839 + 0.255387i \(0.917797\pi\)
\(30\) 0 0
\(31\) 5.46650i 0.981813i −0.871212 0.490907i \(-0.836666\pi\)
0.871212 0.490907i \(-0.163334\pi\)
\(32\) 0 0
\(33\) 2.97752i 0.518321i
\(34\) 0 0
\(35\) 1.51724i 0.256460i
\(36\) 0 0
\(37\) −8.75613 −1.43950 −0.719750 0.694234i \(-0.755744\pi\)
−0.719750 + 0.694234i \(0.755744\pi\)
\(38\) 0 0
\(39\) 3.12330 8.79396i 0.500128 1.40816i
\(40\) 0 0
\(41\) 0.221622i 0.0346115i −0.999850 0.0173057i \(-0.994491\pi\)
0.999850 0.0173057i \(-0.00550886\pi\)
\(42\) 0 0
\(43\) 11.3062i 1.72417i −0.506760 0.862087i \(-0.669157\pi\)
0.506760 0.862087i \(-0.330843\pi\)
\(44\) 0 0
\(45\) −5.61245 −0.836655
\(46\) 0 0
\(47\) 4.58078i 0.668175i 0.942542 + 0.334088i \(0.108428\pi\)
−0.942542 + 0.334088i \(0.891572\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.227372i 0.0318385i
\(52\) 0 0
\(53\) 10.8067i 1.48441i 0.670171 + 0.742207i \(0.266221\pi\)
−0.670171 + 0.742207i \(0.733779\pi\)
\(54\) 0 0
\(55\) −1.74542 −0.235352
\(56\) 0 0
\(57\) 21.3679i 2.83025i
\(58\) 0 0
\(59\) −3.96379 −0.516041 −0.258021 0.966139i \(-0.583070\pi\)
−0.258021 + 0.966139i \(0.583070\pi\)
\(60\) 0 0
\(61\) 11.0547i 1.41541i −0.706509 0.707704i \(-0.749731\pi\)
0.706509 0.707704i \(-0.250269\pi\)
\(62\) 0 0
\(63\) 3.69913i 0.466046i
\(64\) 0 0
\(65\) −5.15500 1.83087i −0.639399 0.227092i
\(66\) 0 0
\(67\) −4.63551 −0.566317 −0.283159 0.959073i \(-0.591382\pi\)
−0.283159 + 0.959073i \(0.591382\pi\)
\(68\) 0 0
\(69\) 16.7824i 2.02037i
\(70\) 0 0
\(71\) 9.36899i 1.11190i −0.831217 0.555948i \(-0.812356\pi\)
0.831217 0.555948i \(-0.187644\pi\)
\(72\) 0 0
\(73\) 10.4110i 1.21851i −0.792974 0.609255i \(-0.791468\pi\)
0.792974 0.609255i \(-0.208532\pi\)
\(74\) 0 0
\(75\) 6.98312i 0.806341i
\(76\) 0 0
\(77\) 1.15039i 0.131099i
\(78\) 0 0
\(79\) −7.68869 −0.865045 −0.432523 0.901623i \(-0.642376\pi\)
−0.432523 + 0.901623i \(0.642376\pi\)
\(80\) 0 0
\(81\) −6.41384 −0.712649
\(82\) 0 0
\(83\) −5.19464 −0.570186 −0.285093 0.958500i \(-0.592024\pi\)
−0.285093 + 0.958500i \(0.592024\pi\)
\(84\) 0 0
\(85\) 0.133285 0.0144568
\(86\) 0 0
\(87\) −7.11928 −0.763267
\(88\) 0 0
\(89\) 1.08552i 0.115064i −0.998344 0.0575322i \(-0.981677\pi\)
0.998344 0.0575322i \(-0.0183232\pi\)
\(90\) 0 0
\(91\) −1.20671 + 3.39762i −0.126498 + 0.356168i
\(92\) 0 0
\(93\) 14.1488 1.46716
\(94\) 0 0
\(95\) −12.5258 −1.28512
\(96\) 0 0
\(97\) 10.4826i 1.06434i 0.846636 + 0.532172i \(0.178624\pi\)
−0.846636 + 0.532172i \(0.821376\pi\)
\(98\) 0 0
\(99\) 4.25545 0.427689
\(100\) 0 0
\(101\) 3.46200i 0.344482i 0.985055 + 0.172241i \(0.0551007\pi\)
−0.985055 + 0.172241i \(0.944899\pi\)
\(102\) 0 0
\(103\) −5.66902 −0.558586 −0.279293 0.960206i \(-0.590100\pi\)
−0.279293 + 0.960206i \(0.590100\pi\)
\(104\) 0 0
\(105\) 3.92702 0.383237
\(106\) 0 0
\(107\) 17.3294i 1.67530i 0.546208 + 0.837650i \(0.316071\pi\)
−0.546208 + 0.837650i \(0.683929\pi\)
\(108\) 0 0
\(109\) 11.0393 1.05737 0.528685 0.848818i \(-0.322685\pi\)
0.528685 + 0.848818i \(0.322685\pi\)
\(110\) 0 0
\(111\) 22.6632i 2.15110i
\(112\) 0 0
\(113\) −7.22371 −0.679550 −0.339775 0.940507i \(-0.610351\pi\)
−0.339775 + 0.940507i \(0.610351\pi\)
\(114\) 0 0
\(115\) 9.83782 0.917381
\(116\) 0 0
\(117\) 12.5682 + 4.46379i 1.16193 + 0.412677i
\(118\) 0 0
\(119\) 0.0878473i 0.00805295i
\(120\) 0 0
\(121\) −9.67660 −0.879691
\(122\) 0 0
\(123\) 0.573616 0.0517212
\(124\) 0 0
\(125\) −11.6797 −1.04466
\(126\) 0 0
\(127\) 10.8980 0.967043 0.483521 0.875333i \(-0.339358\pi\)
0.483521 + 0.875333i \(0.339358\pi\)
\(128\) 0 0
\(129\) 29.2634 2.57650
\(130\) 0 0
\(131\) 11.3300i 0.989908i −0.868919 0.494954i \(-0.835185\pi\)
0.868919 0.494954i \(-0.164815\pi\)
\(132\) 0 0
\(133\) 8.25567i 0.715857i
\(134\) 0 0
\(135\) 2.74548i 0.236293i
\(136\) 0 0
\(137\) 5.25241i 0.448744i 0.974504 + 0.224372i \(0.0720331\pi\)
−0.974504 + 0.224372i \(0.927967\pi\)
\(138\) 0 0
\(139\) 6.66621i 0.565421i −0.959205 0.282710i \(-0.908766\pi\)
0.959205 0.282710i \(-0.0912335\pi\)
\(140\) 0 0
\(141\) −11.8563 −0.998479
\(142\) 0 0
\(143\) 3.90860 + 1.38820i 0.326854 + 0.116087i
\(144\) 0 0
\(145\) 4.17331i 0.346574i
\(146\) 0 0
\(147\) 2.58827i 0.213477i
\(148\) 0 0
\(149\) 17.9670 1.47192 0.735959 0.677027i \(-0.236732\pi\)
0.735959 + 0.677027i \(0.236732\pi\)
\(150\) 0 0
\(151\) 0.785249i 0.0639027i −0.999489 0.0319513i \(-0.989828\pi\)
0.999489 0.0319513i \(-0.0101722\pi\)
\(152\) 0 0
\(153\) −0.324958 −0.0262713
\(154\) 0 0
\(155\) 8.29398i 0.666189i
\(156\) 0 0
\(157\) 11.0014i 0.878004i 0.898486 + 0.439002i \(0.144668\pi\)
−0.898486 + 0.439002i \(0.855332\pi\)
\(158\) 0 0
\(159\) −27.9706 −2.21821
\(160\) 0 0
\(161\) 6.48403i 0.511014i
\(162\) 0 0
\(163\) −9.28282 −0.727087 −0.363543 0.931577i \(-0.618433\pi\)
−0.363543 + 0.931577i \(0.618433\pi\)
\(164\) 0 0
\(165\) 4.51761i 0.351696i
\(166\) 0 0
\(167\) 9.91186i 0.767002i −0.923540 0.383501i \(-0.874718\pi\)
0.923540 0.383501i \(-0.125282\pi\)
\(168\) 0 0
\(169\) 10.0877 + 8.19992i 0.775976 + 0.630763i
\(170\) 0 0
\(171\) 30.5388 2.33536
\(172\) 0 0
\(173\) 22.0729i 1.67817i −0.543999 0.839086i \(-0.683090\pi\)
0.543999 0.839086i \(-0.316910\pi\)
\(174\) 0 0
\(175\) 2.69799i 0.203949i
\(176\) 0 0
\(177\) 10.2593i 0.771139i
\(178\) 0 0
\(179\) 20.2249i 1.51168i 0.654756 + 0.755841i \(0.272772\pi\)
−0.654756 + 0.755841i \(0.727228\pi\)
\(180\) 0 0
\(181\) 19.1349i 1.42229i −0.703048 0.711143i \(-0.748178\pi\)
0.703048 0.711143i \(-0.251822\pi\)
\(182\) 0 0
\(183\) 28.6125 2.11510
\(184\) 0 0
\(185\) −13.2851 −0.976743
\(186\) 0 0
\(187\) −0.101059 −0.00739016
\(188\) 0 0
\(189\) −1.80953 −0.131624
\(190\) 0 0
\(191\) 1.20317 0.0870584 0.0435292 0.999052i \(-0.486140\pi\)
0.0435292 + 0.999052i \(0.486140\pi\)
\(192\) 0 0
\(193\) 16.6104i 1.19564i 0.801630 + 0.597820i \(0.203966\pi\)
−0.801630 + 0.597820i \(0.796034\pi\)
\(194\) 0 0
\(195\) 4.73878 13.3425i 0.339351 0.955478i
\(196\) 0 0
\(197\) −12.3136 −0.877306 −0.438653 0.898656i \(-0.644544\pi\)
−0.438653 + 0.898656i \(0.644544\pi\)
\(198\) 0 0
\(199\) 3.59829 0.255076 0.127538 0.991834i \(-0.459293\pi\)
0.127538 + 0.991834i \(0.459293\pi\)
\(200\) 0 0
\(201\) 11.9979i 0.846269i
\(202\) 0 0
\(203\) 2.75060 0.193054
\(204\) 0 0
\(205\) 0.336252i 0.0234849i
\(206\) 0 0
\(207\) −23.9853 −1.66709
\(208\) 0 0
\(209\) 9.49727 0.656940
\(210\) 0 0
\(211\) 13.3979i 0.922352i 0.887309 + 0.461176i \(0.152572\pi\)
−0.887309 + 0.461176i \(0.847428\pi\)
\(212\) 0 0
\(213\) 24.2495 1.66155
\(214\) 0 0
\(215\) 17.1541i 1.16990i
\(216\) 0 0
\(217\) −5.46650 −0.371091
\(218\) 0 0
\(219\) 26.9463 1.82087
\(220\) 0 0
\(221\) −0.298472 0.106007i −0.0200774 0.00713078i
\(222\) 0 0
\(223\) 15.4009i 1.03132i −0.856793 0.515660i \(-0.827547\pi\)
0.856793 0.515660i \(-0.172453\pi\)
\(224\) 0 0
\(225\) 9.98021 0.665347
\(226\) 0 0
\(227\) 18.4841 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(228\) 0 0
\(229\) −9.79269 −0.647119 −0.323560 0.946208i \(-0.604880\pi\)
−0.323560 + 0.946208i \(0.604880\pi\)
\(230\) 0 0
\(231\) −2.97752 −0.195907
\(232\) 0 0
\(233\) −13.8891 −0.909903 −0.454952 0.890516i \(-0.650343\pi\)
−0.454952 + 0.890516i \(0.650343\pi\)
\(234\) 0 0
\(235\) 6.95013i 0.453376i
\(236\) 0 0
\(237\) 19.9004i 1.29267i
\(238\) 0 0
\(239\) 3.54335i 0.229200i 0.993412 + 0.114600i \(0.0365587\pi\)
−0.993412 + 0.114600i \(0.963441\pi\)
\(240\) 0 0
\(241\) 2.53135i 0.163059i −0.996671 0.0815293i \(-0.974020\pi\)
0.996671 0.0815293i \(-0.0259804\pi\)
\(242\) 0 0
\(243\) 22.0293i 1.41318i
\(244\) 0 0
\(245\) −1.51724 −0.0969327
\(246\) 0 0
\(247\) 28.0497 + 9.96223i 1.78476 + 0.633882i
\(248\) 0 0
\(249\) 13.4451i 0.852049i
\(250\) 0 0
\(251\) 28.4225i 1.79401i 0.442019 + 0.897006i \(0.354262\pi\)
−0.442019 + 0.897006i \(0.645738\pi\)
\(252\) 0 0
\(253\) −7.45919 −0.468955
\(254\) 0 0
\(255\) 0.344978i 0.0216034i
\(256\) 0 0
\(257\) 1.65015 0.102934 0.0514668 0.998675i \(-0.483610\pi\)
0.0514668 + 0.998675i \(0.483610\pi\)
\(258\) 0 0
\(259\) 8.75613i 0.544080i
\(260\) 0 0
\(261\) 10.1748i 0.629805i
\(262\) 0 0
\(263\) 13.6929 0.844338 0.422169 0.906517i \(-0.361269\pi\)
0.422169 + 0.906517i \(0.361269\pi\)
\(264\) 0 0
\(265\) 16.3963i 1.00722i
\(266\) 0 0
\(267\) 2.80960 0.171945
\(268\) 0 0
\(269\) 12.0078i 0.732128i −0.930590 0.366064i \(-0.880705\pi\)
0.930590 0.366064i \(-0.119295\pi\)
\(270\) 0 0
\(271\) 3.02364i 0.183673i −0.995774 0.0918365i \(-0.970726\pi\)
0.995774 0.0918365i \(-0.0292737\pi\)
\(272\) 0 0
\(273\) −8.79396 3.12330i −0.532234 0.189031i
\(274\) 0 0
\(275\) 3.10375 0.187163
\(276\) 0 0
\(277\) 22.1000i 1.32786i 0.747794 + 0.663931i \(0.231113\pi\)
−0.747794 + 0.663931i \(0.768887\pi\)
\(278\) 0 0
\(279\) 20.2213i 1.21062i
\(280\) 0 0
\(281\) 25.7594i 1.53668i −0.640044 0.768339i \(-0.721084\pi\)
0.640044 0.768339i \(-0.278916\pi\)
\(282\) 0 0
\(283\) 1.31917i 0.0784165i −0.999231 0.0392083i \(-0.987516\pi\)
0.999231 0.0392083i \(-0.0124836\pi\)
\(284\) 0 0
\(285\) 32.4201i 1.92040i
\(286\) 0 0
\(287\) −0.221622 −0.0130819
\(288\) 0 0
\(289\) −16.9923 −0.999546
\(290\) 0 0
\(291\) −27.1317 −1.59049
\(292\) 0 0
\(293\) 3.67811 0.214878 0.107439 0.994212i \(-0.465735\pi\)
0.107439 + 0.994212i \(0.465735\pi\)
\(294\) 0 0
\(295\) −6.01401 −0.350149
\(296\) 0 0
\(297\) 2.08167i 0.120791i
\(298\) 0 0
\(299\) −22.0303 7.82437i −1.27405 0.452495i
\(300\) 0 0
\(301\) −11.3062 −0.651677
\(302\) 0 0
\(303\) −8.96057 −0.514772
\(304\) 0 0
\(305\) 16.7726i 0.960396i
\(306\) 0 0
\(307\) 27.2095 1.55293 0.776463 0.630163i \(-0.217012\pi\)
0.776463 + 0.630163i \(0.217012\pi\)
\(308\) 0 0
\(309\) 14.6729i 0.834715i
\(310\) 0 0
\(311\) 14.8834 0.843960 0.421980 0.906605i \(-0.361335\pi\)
0.421980 + 0.906605i \(0.361335\pi\)
\(312\) 0 0
\(313\) −11.4874 −0.649308 −0.324654 0.945833i \(-0.605248\pi\)
−0.324654 + 0.945833i \(0.605248\pi\)
\(314\) 0 0
\(315\) 5.61245i 0.316226i
\(316\) 0 0
\(317\) 13.0995 0.735743 0.367872 0.929877i \(-0.380087\pi\)
0.367872 + 0.929877i \(0.380087\pi\)
\(318\) 0 0
\(319\) 3.16427i 0.177165i
\(320\) 0 0
\(321\) −44.8532 −2.50346
\(322\) 0 0
\(323\) −0.725239 −0.0403534
\(324\) 0 0
\(325\) 9.16676 + 3.25570i 0.508480 + 0.180594i
\(326\) 0 0
\(327\) 28.5726i 1.58007i
\(328\) 0 0
\(329\) 4.58078 0.252546
\(330\) 0 0
\(331\) −21.5841 −1.18637 −0.593183 0.805067i \(-0.702129\pi\)
−0.593183 + 0.805067i \(0.702129\pi\)
\(332\) 0 0
\(333\) 32.3900 1.77496
\(334\) 0 0
\(335\) −7.03317 −0.384263
\(336\) 0 0
\(337\) 3.36280 0.183183 0.0915917 0.995797i \(-0.470805\pi\)
0.0915917 + 0.995797i \(0.470805\pi\)
\(338\) 0 0
\(339\) 18.6969i 1.01548i
\(340\) 0 0
\(341\) 6.28863i 0.340548i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 25.4629i 1.37088i
\(346\) 0 0
\(347\) 10.4226i 0.559513i 0.960071 + 0.279756i \(0.0902537\pi\)
−0.960071 + 0.279756i \(0.909746\pi\)
\(348\) 0 0
\(349\) −5.88538 −0.315037 −0.157519 0.987516i \(-0.550349\pi\)
−0.157519 + 0.987516i \(0.550349\pi\)
\(350\) 0 0
\(351\) −2.18358 + 6.14809i −0.116551 + 0.328161i
\(352\) 0 0
\(353\) 18.2921i 0.973592i −0.873516 0.486796i \(-0.838166\pi\)
0.873516 0.486796i \(-0.161834\pi\)
\(354\) 0 0
\(355\) 14.2150i 0.754453i
\(356\) 0 0
\(357\) 0.227372 0.0120338
\(358\) 0 0
\(359\) 10.4332i 0.550644i −0.961352 0.275322i \(-0.911216\pi\)
0.961352 0.275322i \(-0.0887845\pi\)
\(360\) 0 0
\(361\) 49.1561 2.58716
\(362\) 0 0
\(363\) 25.0456i 1.31455i
\(364\) 0 0
\(365\) 15.7959i 0.826795i
\(366\) 0 0
\(367\) −10.6000 −0.553316 −0.276658 0.960968i \(-0.589227\pi\)
−0.276658 + 0.960968i \(0.589227\pi\)
\(368\) 0 0
\(369\) 0.819806i 0.0426774i
\(370\) 0 0
\(371\) 10.8067 0.561056
\(372\) 0 0
\(373\) 21.9283i 1.13540i 0.823235 + 0.567701i \(0.192167\pi\)
−0.823235 + 0.567701i \(0.807833\pi\)
\(374\) 0 0
\(375\) 30.2301i 1.56108i
\(376\) 0 0
\(377\) 3.31918 9.34549i 0.170947 0.481317i
\(378\) 0 0
\(379\) −10.9073 −0.560268 −0.280134 0.959961i \(-0.590379\pi\)
−0.280134 + 0.959961i \(0.590379\pi\)
\(380\) 0 0
\(381\) 28.2070i 1.44509i
\(382\) 0 0
\(383\) 11.6452i 0.595040i 0.954716 + 0.297520i \(0.0961594\pi\)
−0.954716 + 0.297520i \(0.903841\pi\)
\(384\) 0 0
\(385\) 1.74542i 0.0889548i
\(386\) 0 0
\(387\) 41.8229i 2.12598i
\(388\) 0 0
\(389\) 13.1587i 0.667172i −0.942720 0.333586i \(-0.891741\pi\)
0.942720 0.333586i \(-0.108259\pi\)
\(390\) 0 0
\(391\) 0.569605 0.0288062
\(392\) 0 0
\(393\) 29.3251 1.47926
\(394\) 0 0
\(395\) −11.6656 −0.586958
\(396\) 0 0
\(397\) −2.01211 −0.100985 −0.0504925 0.998724i \(-0.516079\pi\)
−0.0504925 + 0.998724i \(0.516079\pi\)
\(398\) 0 0
\(399\) −21.3679 −1.06973
\(400\) 0 0
\(401\) 3.32731i 0.166158i −0.996543 0.0830789i \(-0.973525\pi\)
0.996543 0.0830789i \(-0.0264753\pi\)
\(402\) 0 0
\(403\) −6.59651 + 18.5731i −0.328595 + 0.925193i
\(404\) 0 0
\(405\) −9.73132 −0.483553
\(406\) 0 0
\(407\) 10.0730 0.499300
\(408\) 0 0
\(409\) 35.5960i 1.76011i 0.474872 + 0.880055i \(0.342494\pi\)
−0.474872 + 0.880055i \(0.657506\pi\)
\(410\) 0 0
\(411\) −13.5947 −0.670575
\(412\) 0 0
\(413\) 3.96379i 0.195045i
\(414\) 0 0
\(415\) −7.88150 −0.386888
\(416\) 0 0
\(417\) 17.2539 0.844929
\(418\) 0 0
\(419\) 1.09920i 0.0536992i −0.999639 0.0268496i \(-0.991452\pi\)
0.999639 0.0268496i \(-0.00854753\pi\)
\(420\) 0 0
\(421\) −9.75651 −0.475503 −0.237752 0.971326i \(-0.576410\pi\)
−0.237752 + 0.971326i \(0.576410\pi\)
\(422\) 0 0
\(423\) 16.9449i 0.823888i
\(424\) 0 0
\(425\) −0.237011 −0.0114967
\(426\) 0 0
\(427\) −11.0547 −0.534974
\(428\) 0 0
\(429\) −3.59302 + 10.1165i −0.173473 + 0.488430i
\(430\) 0 0
\(431\) 6.44866i 0.310621i 0.987866 + 0.155310i \(0.0496378\pi\)
−0.987866 + 0.155310i \(0.950362\pi\)
\(432\) 0 0
\(433\) −25.7879 −1.23929 −0.619643 0.784884i \(-0.712723\pi\)
−0.619643 + 0.784884i \(0.712723\pi\)
\(434\) 0 0
\(435\) −10.8016 −0.517899
\(436\) 0 0
\(437\) −53.5301 −2.56069
\(438\) 0 0
\(439\) 20.8825 0.996668 0.498334 0.866985i \(-0.333945\pi\)
0.498334 + 0.866985i \(0.333945\pi\)
\(440\) 0 0
\(441\) 3.69913 0.176149
\(442\) 0 0
\(443\) 1.97890i 0.0940205i 0.998894 + 0.0470103i \(0.0149694\pi\)
−0.998894 + 0.0470103i \(0.985031\pi\)
\(444\) 0 0
\(445\) 1.64698i 0.0780745i
\(446\) 0 0
\(447\) 46.5035i 2.19954i
\(448\) 0 0
\(449\) 23.3403i 1.10150i 0.834671 + 0.550749i \(0.185658\pi\)
−0.834671 + 0.550749i \(0.814342\pi\)
\(450\) 0 0
\(451\) 0.254952i 0.0120052i
\(452\) 0 0
\(453\) 2.03243 0.0954921
\(454\) 0 0
\(455\) −1.83087 + 5.15500i −0.0858326 + 0.241670i
\(456\) 0 0
\(457\) 12.8179i 0.599595i −0.954003 0.299798i \(-0.903081\pi\)
0.954003 0.299798i \(-0.0969191\pi\)
\(458\) 0 0
\(459\) 0.158962i 0.00741971i
\(460\) 0 0
\(461\) −30.2775 −1.41016 −0.705081 0.709127i \(-0.749089\pi\)
−0.705081 + 0.709127i \(0.749089\pi\)
\(462\) 0 0
\(463\) 0.839207i 0.0390013i 0.999810 + 0.0195006i \(0.00620764\pi\)
−0.999810 + 0.0195006i \(0.993792\pi\)
\(464\) 0 0
\(465\) 21.4670 0.995510
\(466\) 0 0
\(467\) 31.5327i 1.45916i 0.683895 + 0.729581i \(0.260285\pi\)
−0.683895 + 0.729581i \(0.739715\pi\)
\(468\) 0 0
\(469\) 4.63551i 0.214048i
\(470\) 0 0
\(471\) −28.4744 −1.31203
\(472\) 0 0
\(473\) 13.0065i 0.598041i
\(474\) 0 0
\(475\) 22.2737 1.02199
\(476\) 0 0
\(477\) 39.9753i 1.83035i
\(478\) 0 0
\(479\) 37.3603i 1.70704i 0.521062 + 0.853519i \(0.325536\pi\)
−0.521062 + 0.853519i \(0.674464\pi\)
\(480\) 0 0
\(481\) 29.7500 + 10.5661i 1.35649 + 0.481775i
\(482\) 0 0
\(483\) 16.7824 0.763626
\(484\) 0 0
\(485\) 15.9046i 0.722189i
\(486\) 0 0
\(487\) 38.6285i 1.75042i 0.483741 + 0.875211i \(0.339278\pi\)
−0.483741 + 0.875211i \(0.660722\pi\)
\(488\) 0 0
\(489\) 24.0264i 1.08651i
\(490\) 0 0
\(491\) 34.4399i 1.55425i 0.629346 + 0.777125i \(0.283323\pi\)
−0.629346 + 0.777125i \(0.716677\pi\)
\(492\) 0 0
\(493\) 0.241633i 0.0108826i
\(494\) 0 0
\(495\) 6.45653 0.290199
\(496\) 0 0
\(497\) −9.36899 −0.420257
\(498\) 0 0
\(499\) −4.62862 −0.207205 −0.103603 0.994619i \(-0.533037\pi\)
−0.103603 + 0.994619i \(0.533037\pi\)
\(500\) 0 0
\(501\) 25.6545 1.14616
\(502\) 0 0
\(503\) −32.9666 −1.46991 −0.734954 0.678117i \(-0.762796\pi\)
−0.734954 + 0.678117i \(0.762796\pi\)
\(504\) 0 0
\(505\) 5.25267i 0.233741i
\(506\) 0 0
\(507\) −21.2236 + 26.1096i −0.942572 + 1.15957i
\(508\) 0 0
\(509\) −4.90267 −0.217307 −0.108654 0.994080i \(-0.534654\pi\)
−0.108654 + 0.994080i \(0.534654\pi\)
\(510\) 0 0
\(511\) −10.4110 −0.460554
\(512\) 0 0
\(513\) 14.9389i 0.659566i
\(514\) 0 0
\(515\) −8.60126 −0.379017
\(516\) 0 0
\(517\) 5.26970i 0.231761i
\(518\) 0 0
\(519\) 57.1306 2.50775
\(520\) 0 0
\(521\) 6.67667 0.292510 0.146255 0.989247i \(-0.453278\pi\)
0.146255 + 0.989247i \(0.453278\pi\)
\(522\) 0 0
\(523\) 19.5635i 0.855451i −0.903909 0.427726i \(-0.859315\pi\)
0.903909 0.427726i \(-0.140685\pi\)
\(524\) 0 0
\(525\) −6.98312 −0.304768
\(526\) 0 0
\(527\) 0.480218i 0.0209186i
\(528\) 0 0
\(529\) 19.0427 0.827944
\(530\) 0 0
\(531\) 14.6626 0.636301
\(532\) 0 0
\(533\) −0.267434 + 0.752986i −0.0115838 + 0.0326155i
\(534\) 0 0
\(535\) 26.2929i 1.13674i
\(536\) 0 0
\(537\) −52.3475 −2.25896
\(538\) 0 0
\(539\) 1.15039 0.0495509
\(540\) 0 0
\(541\) −37.0198 −1.59160 −0.795802 0.605557i \(-0.792950\pi\)
−0.795802 + 0.605557i \(0.792950\pi\)
\(542\) 0 0
\(543\) 49.5262 2.12537
\(544\) 0 0
\(545\) 16.7492 0.717457
\(546\) 0 0
\(547\) 44.1142i 1.88619i −0.332526 0.943094i \(-0.607901\pi\)
0.332526 0.943094i \(-0.392099\pi\)
\(548\) 0 0
\(549\) 40.8927i 1.74526i
\(550\) 0 0
\(551\) 22.7080i 0.967394i
\(552\) 0 0
\(553\) 7.68869i 0.326956i
\(554\) 0 0
\(555\) 34.3855i 1.45958i
\(556\) 0 0
\(557\) −12.6022 −0.533972 −0.266986 0.963700i \(-0.586028\pi\)
−0.266986 + 0.963700i \(0.586028\pi\)
\(558\) 0 0
\(559\) −13.6433 + 38.4141i −0.577051 + 1.62474i
\(560\) 0 0
\(561\) 0.261568i 0.0110434i
\(562\) 0 0
\(563\) 4.78407i 0.201625i 0.994905 + 0.100812i \(0.0321442\pi\)
−0.994905 + 0.100812i \(0.967856\pi\)
\(564\) 0 0
\(565\) −10.9601 −0.461094
\(566\) 0 0
\(567\) 6.41384i 0.269356i
\(568\) 0 0
\(569\) 28.1257 1.17909 0.589545 0.807736i \(-0.299307\pi\)
0.589545 + 0.807736i \(0.299307\pi\)
\(570\) 0 0
\(571\) 9.67429i 0.404856i 0.979297 + 0.202428i \(0.0648833\pi\)
−0.979297 + 0.202428i \(0.935117\pi\)
\(572\) 0 0
\(573\) 3.11413i 0.130095i
\(574\) 0 0
\(575\) −17.4939 −0.729545
\(576\) 0 0
\(577\) 5.85466i 0.243732i −0.992547 0.121866i \(-0.961112\pi\)
0.992547 0.121866i \(-0.0388879\pi\)
\(578\) 0 0
\(579\) −42.9921 −1.78669
\(580\) 0 0
\(581\) 5.19464i 0.215510i
\(582\) 0 0
\(583\) 12.4320i 0.514879i
\(584\) 0 0
\(585\) 19.0690 + 6.77262i 0.788406 + 0.280014i
\(586\) 0 0
\(587\) −42.1940 −1.74153 −0.870766 0.491698i \(-0.836376\pi\)
−0.870766 + 0.491698i \(0.836376\pi\)
\(588\) 0 0
\(589\) 45.1297i 1.85954i
\(590\) 0 0
\(591\) 31.8708i 1.31099i
\(592\) 0 0
\(593\) 19.0752i 0.783325i 0.920109 + 0.391663i \(0.128100\pi\)
−0.920109 + 0.391663i \(0.871900\pi\)
\(594\) 0 0
\(595\) 0.133285i 0.00546416i
\(596\) 0 0
\(597\) 9.31334i 0.381169i
\(598\) 0 0
\(599\) 3.43267 0.140255 0.0701275 0.997538i \(-0.477659\pi\)
0.0701275 + 0.997538i \(0.477659\pi\)
\(600\) 0 0
\(601\) −38.6990 −1.57857 −0.789283 0.614029i \(-0.789548\pi\)
−0.789283 + 0.614029i \(0.789548\pi\)
\(602\) 0 0
\(603\) 17.1473 0.698293
\(604\) 0 0
\(605\) −14.6817 −0.596896
\(606\) 0 0
\(607\) −17.5335 −0.711664 −0.355832 0.934550i \(-0.615803\pi\)
−0.355832 + 0.934550i \(0.615803\pi\)
\(608\) 0 0
\(609\) 7.11928i 0.288488i
\(610\) 0 0
\(611\) 5.52769 15.5638i 0.223626 0.629642i
\(612\) 0 0
\(613\) 17.9396 0.724574 0.362287 0.932067i \(-0.381996\pi\)
0.362287 + 0.932067i \(0.381996\pi\)
\(614\) 0 0
\(615\) 0.870311 0.0350943
\(616\) 0 0
\(617\) 11.0038i 0.442995i 0.975161 + 0.221498i \(0.0710945\pi\)
−0.975161 + 0.221498i \(0.928906\pi\)
\(618\) 0 0
\(619\) −43.6123 −1.75293 −0.876464 0.481467i \(-0.840104\pi\)
−0.876464 + 0.481467i \(0.840104\pi\)
\(620\) 0 0
\(621\) 11.7330i 0.470830i
\(622\) 0 0
\(623\) −1.08552 −0.0434902
\(624\) 0 0
\(625\) −4.23089 −0.169236
\(626\) 0 0
\(627\) 24.5815i 0.981689i
\(628\) 0 0
\(629\) −0.769203 −0.0306701
\(630\) 0 0
\(631\) 31.3565i 1.24828i −0.781312 0.624141i \(-0.785449\pi\)
0.781312 0.624141i \(-0.214551\pi\)
\(632\) 0 0
\(633\) −34.6774 −1.37830
\(634\) 0 0
\(635\) 16.5349 0.656167
\(636\) 0 0
\(637\) 3.39762 + 1.20671i 0.134619 + 0.0478117i
\(638\) 0 0
\(639\) 34.6571i 1.37101i
\(640\) 0 0
\(641\) −3.14378 −0.124172 −0.0620859 0.998071i \(-0.519775\pi\)
−0.0620859 + 0.998071i \(0.519775\pi\)
\(642\) 0 0
\(643\) 23.9503 0.944508 0.472254 0.881462i \(-0.343440\pi\)
0.472254 + 0.881462i \(0.343440\pi\)
\(644\) 0 0
\(645\) 44.3995 1.74823
\(646\) 0 0
\(647\) −34.8065 −1.36838 −0.684192 0.729302i \(-0.739845\pi\)
−0.684192 + 0.729302i \(0.739845\pi\)
\(648\) 0 0
\(649\) 4.55991 0.178992
\(650\) 0 0
\(651\) 14.1488i 0.554534i
\(652\) 0 0
\(653\) 23.9093i 0.935643i −0.883823 0.467822i \(-0.845039\pi\)
0.883823 0.467822i \(-0.154961\pi\)
\(654\) 0 0
\(655\) 17.1903i 0.671682i
\(656\) 0 0
\(657\) 38.5115i 1.50248i
\(658\) 0 0
\(659\) 9.71979i 0.378629i −0.981916 0.189315i \(-0.939373\pi\)
0.981916 0.189315i \(-0.0606266\pi\)
\(660\) 0 0
\(661\) 3.10662 0.120834 0.0604168 0.998173i \(-0.480757\pi\)
0.0604168 + 0.998173i \(0.480757\pi\)
\(662\) 0 0
\(663\) 0.274373 0.772526i 0.0106558 0.0300024i
\(664\) 0 0
\(665\) 12.5258i 0.485730i
\(666\) 0 0
\(667\) 17.8350i 0.690573i
\(668\) 0 0
\(669\) 39.8616 1.54114
\(670\) 0 0
\(671\) 12.7172i 0.490944i
\(672\) 0 0
\(673\) 29.1531 1.12377 0.561884 0.827216i \(-0.310077\pi\)
0.561884 + 0.827216i \(0.310077\pi\)
\(674\) 0 0
\(675\) 4.88208i 0.187912i
\(676\) 0 0
\(677\) 33.3416i 1.28142i −0.767782 0.640711i \(-0.778640\pi\)
0.767782 0.640711i \(-0.221360\pi\)
\(678\) 0 0
\(679\) 10.4826 0.402284
\(680\) 0 0
\(681\) 47.8418i 1.83330i
\(682\) 0 0
\(683\) 41.2913 1.57997 0.789984 0.613128i \(-0.210089\pi\)
0.789984 + 0.613128i \(0.210089\pi\)
\(684\) 0 0
\(685\) 7.96916i 0.304486i
\(686\) 0 0
\(687\) 25.3461i 0.967014i
\(688\) 0 0
\(689\) 13.0406 36.7171i 0.496807 1.39881i
\(690\) 0 0
\(691\) −6.17715 −0.234990 −0.117495 0.993073i \(-0.537486\pi\)
−0.117495 + 0.993073i \(0.537486\pi\)
\(692\) 0 0
\(693\) 4.25545i 0.161651i
\(694\) 0 0
\(695\) 10.1142i 0.383654i
\(696\) 0 0
\(697\) 0.0194689i 0.000737436i
\(698\) 0 0
\(699\) 35.9486i 1.35970i
\(700\) 0 0
\(701\) 37.6124i 1.42060i 0.703898 + 0.710301i \(0.251441\pi\)
−0.703898 + 0.710301i \(0.748559\pi\)
\(702\) 0 0
\(703\) 72.2878 2.72638
\(704\) 0 0
\(705\) −17.9888 −0.677497
\(706\) 0 0
\(707\) 3.46200 0.130202
\(708\) 0 0
\(709\) −16.2893 −0.611758 −0.305879 0.952070i \(-0.598950\pi\)
−0.305879 + 0.952070i \(0.598950\pi\)
\(710\) 0 0
\(711\) 28.4414 1.06664
\(712\) 0 0
\(713\) 35.4450i 1.32743i
\(714\) 0 0
\(715\) 5.93028 + 2.10622i 0.221780 + 0.0787682i
\(716\) 0 0
\(717\) −9.17113 −0.342502
\(718\) 0 0
\(719\) 12.6463 0.471627 0.235813 0.971798i \(-0.424225\pi\)
0.235813 + 0.971798i \(0.424225\pi\)
\(720\) 0 0
\(721\) 5.66902i 0.211126i
\(722\) 0 0
\(723\) 6.55181 0.243665
\(724\) 0 0
\(725\) 7.42109i 0.275612i
\(726\) 0 0
\(727\) 31.4098 1.16492 0.582462 0.812858i \(-0.302089\pi\)
0.582462 + 0.812858i \(0.302089\pi\)
\(728\) 0 0
\(729\) 37.7762 1.39912
\(730\) 0 0
\(731\) 0.993217i 0.0367355i
\(732\) 0 0
\(733\) −7.05081 −0.260428 −0.130214 0.991486i \(-0.541566\pi\)
−0.130214 + 0.991486i \(0.541566\pi\)
\(734\) 0 0
\(735\) 3.92702i 0.144850i
\(736\) 0 0
\(737\) 5.33266 0.196431
\(738\) 0 0
\(739\) −23.2829 −0.856475 −0.428237 0.903666i \(-0.640865\pi\)
−0.428237 + 0.903666i \(0.640865\pi\)
\(740\) 0 0
\(741\) −25.7849 + 72.6000i −0.947233 + 2.66703i
\(742\) 0 0
\(743\) 41.5984i 1.52610i −0.646341 0.763049i \(-0.723702\pi\)
0.646341 0.763049i \(-0.276298\pi\)
\(744\) 0 0
\(745\) 27.2603 0.998739
\(746\) 0 0
\(747\) 19.2156 0.703063
\(748\) 0 0
\(749\) 17.3294 0.633204
\(750\) 0 0
\(751\) −10.7904 −0.393748 −0.196874 0.980429i \(-0.563079\pi\)
−0.196874 + 0.980429i \(0.563079\pi\)
\(752\) 0 0
\(753\) −73.5650 −2.68086
\(754\) 0 0
\(755\) 1.19141i 0.0433598i
\(756\) 0 0
\(757\) 6.37976i 0.231876i 0.993256 + 0.115938i \(0.0369874\pi\)
−0.993256 + 0.115938i \(0.963013\pi\)
\(758\) 0 0
\(759\) 19.3064i 0.700777i
\(760\) 0 0
\(761\) 21.0373i 0.762603i 0.924451 + 0.381301i \(0.124524\pi\)
−0.924451 + 0.381301i \(0.875476\pi\)
\(762\) 0 0
\(763\) 11.0393i 0.399649i
\(764\) 0 0
\(765\) −0.493039 −0.0178259
\(766\) 0 0
\(767\) 13.4675 + 4.78316i 0.486282 + 0.172710i
\(768\) 0 0
\(769\) 7.90032i 0.284893i 0.989803 + 0.142446i \(0.0454969\pi\)
−0.989803 + 0.142446i \(0.954503\pi\)
\(770\) 0 0
\(771\) 4.27103i 0.153817i
\(772\) 0 0
\(773\) 26.2770 0.945119 0.472560 0.881299i \(-0.343330\pi\)
0.472560 + 0.881299i \(0.343330\pi\)
\(774\) 0 0
\(775\) 14.7486i 0.529785i
\(776\) 0 0
\(777\) −22.6632 −0.813038
\(778\) 0 0
\(779\) 1.82963i 0.0655535i
\(780\) 0 0
\(781\) 10.7780i 0.385668i
\(782\) 0 0
\(783\) 4.97728 0.177873
\(784\) 0 0
\(785\) 16.6917i 0.595751i
\(786\) 0 0
\(787\) −11.3359 −0.404080 −0.202040 0.979377i \(-0.564757\pi\)
−0.202040 + 0.979377i \(0.564757\pi\)
\(788\) 0 0
\(789\) 35.4408i 1.26173i
\(790\) 0 0
\(791\) 7.22371i 0.256846i
\(792\) 0 0
\(793\) −13.3399 + 37.5597i −0.473712 + 1.33378i
\(794\) 0 0
\(795\) −42.4381 −1.50512
\(796\) 0 0
\(797\) 33.0929i 1.17221i −0.810235 0.586105i \(-0.800661\pi\)
0.810235 0.586105i \(-0.199339\pi\)
\(798\) 0 0
\(799\) 0.402409i 0.0142362i
\(800\) 0 0
\(801\) 4.01546i 0.141879i
\(802\) 0 0
\(803\) 11.9767i 0.422648i
\(804\) 0 0
\(805\) 9.83782i 0.346738i
\(806\) 0 0
\(807\) 31.0794 1.09405
\(808\) 0 0
\(809\) −36.5501 −1.28503 −0.642516 0.766272i \(-0.722109\pi\)
−0.642516 + 0.766272i \(0.722109\pi\)
\(810\) 0 0
\(811\) −2.27406 −0.0798529 −0.0399265 0.999203i \(-0.512712\pi\)
−0.0399265 + 0.999203i \(0.512712\pi\)
\(812\) 0 0
\(813\) 7.82599 0.274469
\(814\) 0 0
\(815\) −14.0842 −0.493350
\(816\) 0 0
\(817\) 93.3400i 3.26555i
\(818\) 0 0
\(819\) 4.46379 12.5682i 0.155977 0.439170i
\(820\) 0 0
\(821\) 28.9611 1.01075 0.505375 0.862900i \(-0.331354\pi\)
0.505375 + 0.862900i \(0.331354\pi\)
\(822\) 0 0
\(823\) −18.0668 −0.629768 −0.314884 0.949130i \(-0.601966\pi\)
−0.314884 + 0.949130i \(0.601966\pi\)
\(824\) 0 0
\(825\) 8.03333i 0.279685i
\(826\) 0 0
\(827\) 50.9766 1.77263 0.886315 0.463083i \(-0.153257\pi\)
0.886315 + 0.463083i \(0.153257\pi\)
\(828\) 0 0
\(829\) 42.8967i 1.48987i −0.667140 0.744933i \(-0.732482\pi\)
0.667140 0.744933i \(-0.267518\pi\)
\(830\) 0 0
\(831\) −57.2008 −1.98427
\(832\) 0 0
\(833\) −0.0878473 −0.00304373
\(834\) 0 0
\(835\) 15.0386i 0.520434i
\(836\) 0 0
\(837\) −9.89178 −0.341910
\(838\) 0 0
\(839\) 46.5281i 1.60633i 0.595758 + 0.803164i \(0.296852\pi\)
−0.595758 + 0.803164i \(0.703148\pi\)
\(840\) 0 0
\(841\) 21.4342 0.739111
\(842\) 0 0
\(843\) 66.6722 2.29631
\(844\) 0 0
\(845\) 15.3054 + 12.4412i 0.526522 + 0.427991i
\(846\) 0 0
\(847\) 9.67660i 0.332492i
\(848\) 0 0
\(849\) 3.41436 0.117181
\(850\) 0 0
\(851\) −56.7751 −1.94622
\(852\) 0 0
\(853\) 34.8932 1.19472 0.597360 0.801973i \(-0.296216\pi\)
0.597360 + 0.801973i \(0.296216\pi\)
\(854\) 0 0
\(855\) 46.3346 1.58461
\(856\) 0 0
\(857\) 3.09683 0.105786 0.0528928 0.998600i \(-0.483156\pi\)
0.0528928 + 0.998600i \(0.483156\pi\)
\(858\) 0 0
\(859\) 32.0784i 1.09450i −0.836969 0.547251i \(-0.815674\pi\)
0.836969 0.547251i \(-0.184326\pi\)
\(860\) 0 0
\(861\) 0.573616i 0.0195488i
\(862\) 0 0
\(863\) 4.04153i 0.137575i 0.997631 + 0.0687876i \(0.0219131\pi\)
−0.997631 + 0.0687876i \(0.978087\pi\)
\(864\) 0 0
\(865\) 33.4898i 1.13869i
\(866\) 0 0
\(867\) 43.9806i 1.49366i
\(868\) 0 0
\(869\) 8.84502 0.300047
\(870\) 0 0
\(871\) 15.7497 + 5.59373i 0.533658 + 0.189536i
\(872\) 0 0
\(873\) 38.7764i 1.31238i
\(874\) 0 0
\(875\) 11.6797i 0.394845i
\(876\) 0 0
\(877\) 6.27681 0.211953 0.105976 0.994369i \(-0.466203\pi\)
0.105976 + 0.994369i \(0.466203\pi\)
\(878\) 0 0
\(879\) 9.51994i 0.321100i
\(880\) 0 0
\(881\) 5.41652 0.182487 0.0912437 0.995829i \(-0.470916\pi\)
0.0912437 + 0.995829i \(0.470916\pi\)
\(882\) 0 0
\(883\) 16.4099i 0.552236i −0.961124 0.276118i \(-0.910952\pi\)
0.961124 0.276118i \(-0.0890480\pi\)
\(884\) 0 0
\(885\) 15.5659i 0.523241i
\(886\) 0 0
\(887\) −39.5735 −1.32875 −0.664374 0.747400i \(-0.731302\pi\)
−0.664374 + 0.747400i \(0.731302\pi\)
\(888\) 0 0
\(889\) 10.8980i 0.365508i
\(890\) 0 0
\(891\) 7.37844 0.247187
\(892\) 0 0
\(893\) 37.8174i 1.26551i
\(894\) 0 0
\(895\) 30.6860i 1.02572i
\(896\) 0 0
\(897\) 20.2516 57.0203i 0.676180 1.90385i
\(898\) 0 0
\(899\) 15.0362 0.501484
\(900\) 0 0
\(901\) 0.949340i 0.0316271i
\(902\) 0 0
\(903\) 29.2634i 0.973824i
\(904\) 0 0
\(905\) 29.0322i 0.965062i
\(906\) 0 0
\(907\) 54.8552i 1.82144i −0.413026 0.910719i \(-0.635528\pi\)
0.413026 0.910719i \(-0.364472\pi\)
\(908\) 0 0
\(909\) 12.8064i 0.424760i
\(910\) 0 0
\(911\) 19.6423 0.650778 0.325389 0.945580i \(-0.394505\pi\)
0.325389 + 0.945580i \(0.394505\pi\)
\(912\) 0 0
\(913\) 5.97588 0.197773
\(914\) 0 0
\(915\) 43.4120 1.43515
\(916\) 0 0
\(917\) −11.3300 −0.374150
\(918\) 0 0
\(919\) −50.8099 −1.67606 −0.838032 0.545621i \(-0.816294\pi\)
−0.838032 + 0.545621i \(0.816294\pi\)
\(920\) 0 0
\(921\) 70.4253i 2.32059i
\(922\) 0 0
\(923\) −11.3057 + 31.8323i −0.372132 + 1.04777i
\(924\) 0 0
\(925\) 23.6240 0.776751
\(926\) 0 0
\(927\) 20.9704 0.688760
\(928\) 0 0
\(929\) 22.2352i 0.729515i 0.931103 + 0.364757i \(0.118848\pi\)
−0.931103 + 0.364757i \(0.881152\pi\)
\(930\) 0 0
\(931\) 8.25567 0.270569
\(932\) 0 0
\(933\) 38.5222i 1.26116i
\(934\) 0 0
\(935\) −0.153330 −0.00501444
\(936\) 0 0
\(937\) 32.6708 1.06731 0.533653 0.845703i \(-0.320819\pi\)
0.533653 + 0.845703i \(0.320819\pi\)
\(938\) 0 0
\(939\) 29.7325i 0.970285i
\(940\) 0 0
\(941\) −29.1551 −0.950428 −0.475214 0.879870i \(-0.657629\pi\)
−0.475214 + 0.879870i \(0.657629\pi\)
\(942\) 0 0
\(943\) 1.43700i 0.0467952i
\(944\) 0 0
\(945\) −2.74548 −0.0893105
\(946\) 0 0
\(947\) −46.5705 −1.51334 −0.756668 0.653799i \(-0.773174\pi\)
−0.756668 + 0.653799i \(0.773174\pi\)
\(948\) 0 0
\(949\) −12.5631 + 35.3725i −0.407814 + 1.14824i
\(950\) 0 0
\(951\) 33.9051i 1.09945i
\(952\) 0 0
\(953\) 2.59239 0.0839758 0.0419879 0.999118i \(-0.486631\pi\)
0.0419879 + 0.999118i \(0.486631\pi\)
\(954\) 0 0
\(955\) 1.82550 0.0590716
\(956\) 0 0
\(957\) 8.18997 0.264744
\(958\) 0 0
\(959\) 5.25241 0.169609
\(960\) 0 0
\(961\) 1.11733 0.0360429
\(962\) 0 0
\(963\) 64.1038i 2.06571i
\(964\) 0 0
\(965\) 25.2019i 0.811277i
\(966\) 0 0
\(967\) 39.6322i 1.27449i 0.770663 + 0.637243i \(0.219925\pi\)
−0.770663 + 0.637243i \(0.780075\pi\)
\(968\) 0 0
\(969\) 1.87711i 0.0603015i
\(970\) 0 0
\(971\) 28.8005i 0.924252i −0.886814 0.462126i \(-0.847087\pi\)
0.886814 0.462126i \(-0.152913\pi\)
\(972\) 0 0
\(973\) −6.66621 −0.213709
\(974\) 0 0
\(975\) −8.42663 + 23.7260i −0.269868 + 0.759840i
\(976\) 0 0
\(977\) 46.4373i 1.48566i −0.669480 0.742830i \(-0.733483\pi\)
0.669480 0.742830i \(-0.266517\pi\)
\(978\) 0 0
\(979\) 1.24877i 0.0399108i
\(980\) 0 0
\(981\) −40.8357 −1.30378
\(982\) 0 0
\(983\) 46.2252i 1.47436i 0.675699 + 0.737178i \(0.263842\pi\)
−0.675699 + 0.737178i \(0.736158\pi\)
\(984\) 0 0
\(985\) −18.6826 −0.595278
\(986\) 0 0
\(987\) 11.8563i 0.377389i
\(988\) 0 0
\(989\) 73.3096i 2.33111i
\(990\) 0 0
\(991\) −10.6490 −0.338277 −0.169139 0.985592i \(-0.554099\pi\)
−0.169139 + 0.985592i \(0.554099\pi\)
\(992\) 0 0
\(993\) 55.8653i 1.77283i
\(994\) 0 0
\(995\) 5.45946 0.173077
\(996\) 0 0
\(997\) 50.3193i 1.59363i −0.604225 0.796814i \(-0.706517\pi\)
0.604225 0.796814i \(-0.293483\pi\)
\(998\) 0 0
\(999\) 15.8445i 0.501296i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.20 84
4.3 odd 2 728.2.i.a.701.83 yes 84
8.3 odd 2 728.2.i.a.701.1 84
8.5 even 2 inner 2912.2.i.a.337.65 84
13.12 even 2 inner 2912.2.i.a.337.66 84
52.51 odd 2 728.2.i.a.701.2 yes 84
104.51 odd 2 728.2.i.a.701.84 yes 84
104.77 even 2 inner 2912.2.i.a.337.19 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.1 84 8.3 odd 2
728.2.i.a.701.2 yes 84 52.51 odd 2
728.2.i.a.701.83 yes 84 4.3 odd 2
728.2.i.a.701.84 yes 84 104.51 odd 2
2912.2.i.a.337.19 84 104.77 even 2 inner
2912.2.i.a.337.20 84 1.1 even 1 trivial
2912.2.i.a.337.65 84 8.5 even 2 inner
2912.2.i.a.337.66 84 13.12 even 2 inner