Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2912,2,Mod(337,2912)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2912.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2912 = 2^{5} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2912.i (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.2524370686\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Twist minimal: | no (minimal twist has level 728) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 | 0 | − | 2.77388i | 0 | 4.08827 | 0 | 1.00000i | 0 | −4.69442 | 0 | |||||||||||||||||
337.2 | 0 | 2.77388i | 0 | 4.08827 | 0 | − | 1.00000i | 0 | −4.69442 | 0 | |||||||||||||||||
337.3 | 0 | − | 2.65465i | 0 | 3.67757 | 0 | − | 1.00000i | 0 | −4.04717 | 0 | ||||||||||||||||
337.4 | 0 | 2.65465i | 0 | 3.67757 | 0 | 1.00000i | 0 | −4.04717 | 0 | ||||||||||||||||||
337.5 | 0 | − | 1.24325i | 0 | −4.24503 | 0 | − | 1.00000i | 0 | 1.45434 | 0 | ||||||||||||||||
337.6 | 0 | 1.24325i | 0 | −4.24503 | 0 | 1.00000i | 0 | 1.45434 | 0 | ||||||||||||||||||
337.7 | 0 | − | 2.60765i | 0 | −3.65839 | 0 | 1.00000i | 0 | −3.79982 | 0 | |||||||||||||||||
337.8 | 0 | 2.60765i | 0 | −3.65839 | 0 | − | 1.00000i | 0 | −3.79982 | 0 | |||||||||||||||||
337.9 | 0 | − | 3.39926i | 0 | 2.48834 | 0 | 1.00000i | 0 | −8.55495 | 0 | |||||||||||||||||
337.10 | 0 | 3.39926i | 0 | 2.48834 | 0 | − | 1.00000i | 0 | −8.55495 | 0 | |||||||||||||||||
337.11 | 0 | − | 1.58847i | 0 | −3.12702 | 0 | 1.00000i | 0 | 0.476774 | 0 | |||||||||||||||||
337.12 | 0 | 1.58847i | 0 | −3.12702 | 0 | − | 1.00000i | 0 | 0.476774 | 0 | |||||||||||||||||
337.13 | 0 | − | 0.208275i | 0 | −3.52272 | 0 | 1.00000i | 0 | 2.95662 | 0 | |||||||||||||||||
337.14 | 0 | 0.208275i | 0 | −3.52272 | 0 | − | 1.00000i | 0 | 2.95662 | 0 | |||||||||||||||||
337.15 | 0 | − | 3.20622i | 0 | −1.28006 | 0 | 1.00000i | 0 | −7.27982 | 0 | |||||||||||||||||
337.16 | 0 | 3.20622i | 0 | −1.28006 | 0 | − | 1.00000i | 0 | −7.27982 | 0 | |||||||||||||||||
337.17 | 0 | − | 0.944401i | 0 | 3.13735 | 0 | − | 1.00000i | 0 | 2.10811 | 0 | ||||||||||||||||
337.18 | 0 | 0.944401i | 0 | 3.13735 | 0 | 1.00000i | 0 | 2.10811 | 0 | ||||||||||||||||||
337.19 | 0 | − | 2.58827i | 0 | 1.51724 | 0 | 1.00000i | 0 | −3.69913 | 0 | |||||||||||||||||
337.20 | 0 | 2.58827i | 0 | 1.51724 | 0 | − | 1.00000i | 0 | −3.69913 | 0 | |||||||||||||||||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
104.e | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2912.2.i.a | 84 | |
4.b | odd | 2 | 1 | 728.2.i.a | ✓ | 84 | |
8.b | even | 2 | 1 | inner | 2912.2.i.a | 84 | |
8.d | odd | 2 | 1 | 728.2.i.a | ✓ | 84 | |
13.b | even | 2 | 1 | inner | 2912.2.i.a | 84 | |
52.b | odd | 2 | 1 | 728.2.i.a | ✓ | 84 | |
104.e | even | 2 | 1 | inner | 2912.2.i.a | 84 | |
104.h | odd | 2 | 1 | 728.2.i.a | ✓ | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.i.a | ✓ | 84 | 4.b | odd | 2 | 1 | |
728.2.i.a | ✓ | 84 | 8.d | odd | 2 | 1 | |
728.2.i.a | ✓ | 84 | 52.b | odd | 2 | 1 | |
728.2.i.a | ✓ | 84 | 104.h | odd | 2 | 1 | |
2912.2.i.a | 84 | 1.a | even | 1 | 1 | trivial | |
2912.2.i.a | 84 | 8.b | even | 2 | 1 | inner | |
2912.2.i.a | 84 | 13.b | even | 2 | 1 | inner | |
2912.2.i.a | 84 | 104.e | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(2912, [\chi])\).