Properties

Label 2912.2.i.a
Level $2912$
Weight $2$
Character orbit 2912.i
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(337,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1 0 2.77388i 0 4.08827 0 1.00000i 0 −4.69442 0
337.2 0 2.77388i 0 4.08827 0 1.00000i 0 −4.69442 0
337.3 0 2.65465i 0 3.67757 0 1.00000i 0 −4.04717 0
337.4 0 2.65465i 0 3.67757 0 1.00000i 0 −4.04717 0
337.5 0 1.24325i 0 −4.24503 0 1.00000i 0 1.45434 0
337.6 0 1.24325i 0 −4.24503 0 1.00000i 0 1.45434 0
337.7 0 2.60765i 0 −3.65839 0 1.00000i 0 −3.79982 0
337.8 0 2.60765i 0 −3.65839 0 1.00000i 0 −3.79982 0
337.9 0 3.39926i 0 2.48834 0 1.00000i 0 −8.55495 0
337.10 0 3.39926i 0 2.48834 0 1.00000i 0 −8.55495 0
337.11 0 1.58847i 0 −3.12702 0 1.00000i 0 0.476774 0
337.12 0 1.58847i 0 −3.12702 0 1.00000i 0 0.476774 0
337.13 0 0.208275i 0 −3.52272 0 1.00000i 0 2.95662 0
337.14 0 0.208275i 0 −3.52272 0 1.00000i 0 2.95662 0
337.15 0 3.20622i 0 −1.28006 0 1.00000i 0 −7.27982 0
337.16 0 3.20622i 0 −1.28006 0 1.00000i 0 −7.27982 0
337.17 0 0.944401i 0 3.13735 0 1.00000i 0 2.10811 0
337.18 0 0.944401i 0 3.13735 0 1.00000i 0 2.10811 0
337.19 0 2.58827i 0 1.51724 0 1.00000i 0 −3.69913 0
337.20 0 2.58827i 0 1.51724 0 1.00000i 0 −3.69913 0
See all 84 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.84
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
13.b even 2 1 inner
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.2.i.a 84
4.b odd 2 1 728.2.i.a 84
8.b even 2 1 inner 2912.2.i.a 84
8.d odd 2 1 728.2.i.a 84
13.b even 2 1 inner 2912.2.i.a 84
52.b odd 2 1 728.2.i.a 84
104.e even 2 1 inner 2912.2.i.a 84
104.h odd 2 1 728.2.i.a 84
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.i.a 84 4.b odd 2 1
728.2.i.a 84 8.d odd 2 1
728.2.i.a 84 52.b odd 2 1
728.2.i.a 84 104.h odd 2 1
2912.2.i.a 84 1.a even 1 1 trivial
2912.2.i.a 84 8.b even 2 1 inner
2912.2.i.a 84 13.b even 2 1 inner
2912.2.i.a 84 104.e even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(2912, [\chi])\).